lan Stephenson

RenderMan®

Second Edition

A Springer

Essential RenderMan®

[an Stephenson

Essential
RenderMan”®

Second Edition

@ Springer

Ian Stephenson, DPhil
National Centre for Computer Animation
Bournemouth University, Poole, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006922751
ISBN 978-1-84628-344-4 eISBN 978-1-84628-800-5

Printed on acid-free paper
© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the terms
of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regulations
and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

987654321

Springer Science+Business Media
springer.com

Contents

Preface Xi
PART 1. GENERAL OVERVIEWttt 1
1. WHAT IS RENDERMAN? i 3
2. ISRENDERMAN FORME? 7
3. AN OVERVIEW OF THE RENDERMAN SYSTEM 9
4. WHAT DOINEED? e 11
Hardware 11
Rendering Software 12
SUMMATY . . o e 12
5. HOWTOUSETHISBOOK 13
PART 2. GEOMETRYciiiiiiiiiiiiiiiiiiiiienenennenns 15
6. ASIMPLESCENE i 17
Introduction 17
MakingaRIB 17
What goesinaRIB? 18
RenderingaRIB 19
Troubleshooting 20
SUMMATY . . o e 21
7. MOVING THINGS AROUNDcoiiiiiiiinina... 23
Introduction 23
Positioning Objects 23
Grouping Transforms 25
Using Hierarchical Transforms 27
SUMMATY . . o e 32
Related Commands, 32

vi

10.

11.

12.

Contents
SIMPLE SURFACES i 33
Introduction 33
Spheres 33
Cones and Cylinders, 36
TOTT ..ot 37
SUMMATY . oot 39
Related Commands, 39
COLOR AND OTHER ATTRIBUTES OF OBJECTS 41
Introduction 41
COlOr .« ot 41
Grouping Attributes 42
OPAaCILY . .ot 43
Other Attributes o e 45
SUMMATY . .ot e 46
Related Commands, 47
CAMERA SETUP i 49
Introduction 49
OPLIONS . . ottt e 49
Fieldof View 49
Positioning the Camera i, 51
CHPPING . . oot e 52
Image Resolution i 52
Super Sampling 53
EXpoSure 54
SUMMATY . .ot 55
Related Commands i 55
LIGHTING e 57
Introduction 57
Aplastic Object . ..o vttt e 57
Pointlight 58
Distantlights 60
Spotlights 62
Ambient Lights 64
SUMMATY . .ot 67
THE STANDARD SURFACETYPES 69
Introduction 69
CONSIANT . . oot e 69
Matte . . oottt e 70
Metal . .. 71
Plastic 73
Painted Plastic 74
SUMMATY . oot 76

Related Commands 76

Contents vii

13. MORE COMPLEX SURFACESo ... 79
Introduction 79
Polygons 79
“Curved” Polygons 82
Patches 84
Cubic Patches 87
Rib Archives 89
SUMMATY .« o ettt e e e e e 89
Related Commands 89

14, SHADOWS . .. 91
Introduction e 91
Shadow Maps e 91
Generatinga Shadow Map 92
ApplyingaShadow Map i 96
Ray-Traced Shadows i 99
SUMMATY . .o o 100
Related Commandst 100

15. MOTION BLUR AND DEPTHOFFIELD 101
Introduction 101
Motion Blur 101
Depthof Field i 105
SUMMATY .« ottt e e e e 109

16. THE C APIL e 111
Introduction 111
OVeIVIEW .« v vttt et et e e 111
Afirst CProgram 112
Parameter Lists e 114
Declaring Parameter Types 116
Light Sourcest 117
SUMMATYo 118

17. PARTICLES AND HAIR 119
Introduction e e 119
Particles e 119
Particle Size o e 121
Hair ... e 125
SUMMATY . . oo e 127

PART 3. SHADINGt tittiiitiiiiiiitineenecnncnneennes 129

18. MY FIRST SHADER i 131
Introduction e 131
Writingthe Code 131

Preparing the Shaderfor Use 132

viii

19.

20.

21.

22.

23.

24.

Contents

Viewing the Results 133
SUMMATY . .ot 134
LIGHTING MODELS e 135
Introductiont 135
CONSLANE . . .ttt et e e 135
Matte . .o e 136
Metal ... 140
Plastic 142
SUMMATY . .o ot e e e 143
Related Functions i, 144
COLOR RAMPS e 145
Introduction i 145
A Standard Shader 145
ASimple Ramp 146
AColoredRamp 149
Generalizingthe Shader 150
SUMMATY . . oot e e e 152
SIMPLE PATTERNS e 153
Introduction i 153
Bands 153
Lines ..o 155
Carcles . oo 156
More Linest e 157
Boolean Operationsttt 158
SUMMATY . .ttt e e 158
TILING AND REPEATING PATTERNS 159
Introduction i e 159
Creating Tiles 159
Identifying Tiles i 161
CellNOISE . . . vttt e e e 163
Other Modificationstossandtt 166
SUMMATY . .ttt e e 167
PROJECTIONS AND COORDINATE SPACES 169
Introductiont 169
3D Coordinatesviii e 169
Coordinate SYSEMS . . .o v vttt e 170
More Complex Projections 173
SOl TeXtUIeso vttt e 175
More Coordinate System Transforms 176
SUMMATY . . oot e e e 177
PAINTED TEXTURES e 179
Introductiont 179

Accessing Image Files i 179

Contents ix

25.

26.

27.

28.

29.

Procedurally Modifying a Texture Map 181
Maps as Controls for Procedural Textures 183
Environment Maps 184
Generating Environment Maps 186
Applying Environment Maps i 187
SUMMATY .« o vttt e e e e e 189
Related Functions i 190
DISPLACEMENT e 191
Introduction 191
Modifying P 191
Displacing in the Right Space 194
NotMoving P 197
SUMMATY .« o ettt e e e e e 199
NOISE . .. 201
Introduction 201
Controlled Randomness 201
NOISE . .ottt 202
Distorting Texture Coordinatescouuene... 204
Layering Noiset 206
Turbulence 208
SUMMATY .« ottt e e e e 212
ALIASING ... 213
Introduction 213
What is Aliasing? 213
Softening Edges 215
Analytical Antialiasing i 217
Integrating 2D Functions iy 220
Frequency Clamping0 i, 221
Checkerboard 223
SUMMATY ottt e e e e e e 228
SHADING MODELS i 229
Introduction 229
Inside the Standard Models 229
Diffuset 229
Specular 230
Custom Illumination Models 231
SUMMATY o vttt e e e e e 233
OTHER KINDS OF SHADER, 235
Introduction 235
Volume Shaders i 235
Light Shaders i 238
Pointlights 238

Spotlights 240

Contents

X
Shadows ... 242
SUMMATY . oot e 243
Related Functions 244

30. GLOBAL ILLUMINATION 245
Introduction 245
Shadows ... 245
Mirror Reflections 247
Soft Reflectionso 249
Bounce Light 252
Bringing it all Together 254
CaUSHICS « o v et et e 256
SUMMATY . .ot 258

BIBLIOGRAPHY e 261

Preface

When I wrote Essential RenderMan fast in 2002 it didn’t seem that [was writing
about a moving target. The RenderMan API is a standard, and hence doesn’t
change radically from release to release. However, once you start writing things
down they seem to change far more quickly than you expect.

No sooner had the book gone to press than two important renderers disap-
peared—BMRT and Entropy were both withdrawn as Exluna became a part of
Nvidia. While these systems are missed, new comers Aqsis and 3DLight have
both grown in strength and popularity (and have contributed images to this new
edition), providing many users with their first experiences of RenderMan.

Global Illumination is the biggest technical development. In 2002, GI was still
largely missing from the RenderMan API. Some renderers supported it, but in
varying degrees and with different APIs. Pixar’s inclusion of GI in PRMan 11
announced that GI was ready for feature film production, and provided a standard
interface which other implementations could maintain compatability with. Four
years later and Gl is almost a standard feature of RenderMan, and can be included
in this second edition. I say almost as things are still changing—Integrating GI
with SL shaders is a tricky job, and we are still learning how to do it. Each new
release of a renderer adds some extension which may be more widely adopted, or
may fade away when we realise it isn’t such a good idea after all.

The biggest change in the new edition is therefore the addition of a chapter on
GIL. It can only consider the core features of RenderMan GI, as each implementa-
tion still has its own unique quirks, but should provide a starting point for your own
GI experiments. Everything else has been tweaked, edited and re-rendered, with
extra tips, tricks, and warnings to help you through your first weeks of RenderMan.
Thanks to all of those who provided images for the new edition, and to everyone
at Pixar, Sitex Graphics (Scott—Who got married), DotC Software (Rick and
Cheryl—Who became grandparents), Agsis (Paul), 3DLight (Aghiles and crew),
and ART for getting the software out there so that I can write about it. Thanks to
everyone at the NCCA, including John Vince (who retired).

Special thanks to Amanda (who got married to me!). By the time you read this
we will also be parents . . . I guess a lot does change in four years.

xi

Part 1

General Overview

Chapter 1
What 1s RenderMan?

The first question that needs to be answered is “What exactly is RenderMan?”
Contrary to the common missuse of the term within the animation and effects
industry, RenderMan is not the renderer developed and used by Pixar to produce
their animated movies. In fact RenderMan is not a piece of software at all.
RenderMan is a rendering API. What this means in practice is that RenderMan
defines how animation and modeling software, like Softlmage or Maya, should talk
to rendering software, as in Figure 1.1. The rendering software receives instructions
from the modeler that describe the scene and from these commands it generates
images. This separation of modeling from rendering benefits developers of model-
ing software, developers of renderers, and end users. The API was developed by
Pixar in the late 1980s at a time when they were developing custom rendering
hardware. They were concerned that as wide a range of users as possible should

Modeling Software
(e.g. Maya)

Render
Man
Interface

Rendering Software
(e.g. PRMan)

FIGURE 1.1. A Rendering API

4 Essential RenderMan

be able to make use of their system, and hence entered into discussion with other
major graphics companies. The result of these negotiations was the publication of
the RenderMan standard. The idea was that anyone could develop modeling soft-
ware which could talk to Pixar’s new hardware. In addition, anyone could build a
rendering system which conformed to the standard—The standard being designed
to avoid being directly tied to any particular rendering technique or implementa-
tion. Any modeler that conformed to the standard would be able to render its
images using any renderer that conformed to the standard.

Ideally, users would be able to select the modeler that best suited their needs,
and match it to a renderer with an appropriate set of features, as in Figure 1.2.
Software developers could focus on the area of the animation pipeline in which
they excelled, and let others provide the tools required for other tasks. Technical
directors who developed skills in RenderMan would be able to apply their expert-
ise even when they have upgraded to a new software package, or moved between
studios using different rendering systems.

Maya Houdini Soft Image

l

Render
Man
Interface

PRMan Air RenderDC Agsis

FIGURE 1.2. Mix and match toolsets

Unfortunately, owing to the politics of commercial production and software
development, this situation did not materialize. Pixar’s hardware failed to become
commercially viable, though they did produce a very successful software imple-
mentation of their renderer which also conformed to the RenderMan standard.
This software is known as PhotoRealistic RenderMan, or PRMan. However, for
many years no other RenderMan compliant renderers were available. In fact,
RenderMan became synonymous with PRMan.

Though the PRMan software has always been considered to be excellent, it is
rather expensive. Only a few companies producing high quality film work could
afford PRMan, and as a result few modeling packages made the effort to provide
good support for RenderMan renderers.

What is RenderMan? 5

Things began to change with the release of Blue Moon Rendering Tools (BMRT).
When this renderer was made available at very low cost, RenderMan became
accessable to a new group of users who could never have afforded PRMan.
This opening up of RenderMan led to increased support and interest in the APL

BMRT is no longer available, but in recent years, many renders that claim some
degree of RenderMan compatibility have become available. Each of these provides
a different set of strengths and features such as global illumination, speed, porta-
bility, or simply cost. Many of these renderers are commercial, while others are
available as free downloads from the authors’ websites.

Access to RenderMan from animation packages has also improved. Some pack-
ages have support for RenderMan renderers built in, but most require a plug-in of
some kind. The style of these plug-ins varies, as does their cost and quality.

Though the RenderMan API has been in use for many years, it is perhaps now
more relevant than ever. It has wide support, and production houses worldwide
are using high quality RenderMan compliant renderers. RenderMan is at last start-
ing to realize its potential as the PostScript of 3D.

Chapter 2
Is RenderMan for Me?

In principle, it should be possible to use a RenderMan compliant renderer from a
compatible animation package with virtually no knowledge of the rendering API.
In practice, however, this is rarely the case, and at the very least an understand-
ing of the general architecture is invaluable. Though we would like to be able to
treat rendering as something that “just works,” even the best rendering systems
benefit from a little user intervention.

Rendering is a complex part of the computer imaging process. RenderMan
gives the user control over almost all aspects of this process and hence a full under-
standing can take many years to acquire. To use a RenderMan renderer to its full
potential on a project requires the same investment in time and effort as you might
expect to spend learning an animation and modeling package. Fortunately, it is
possible to obtain useful results from a more limited effort.

While the full details of the RenderMan API are complex, the structure is simple
and a new user can rapidly gain enough experience to make minor modifications to
scenes which have been generated by other means, for example, changing the color
of an object, or re-rendering a scene at a higher resolution. Manually modifying a
scene can enable access to the more powerful facilitates available in the renderer
that may not be supported by a particular animation package. Inspecting the scenes
generated by your modeler prior to rendering is a powerful debugging technique.

This book assumes no specific knowledge of rendering, but some background
experience of computer graphics techniques is useful. Limited programming expe-
rience is required but in most cases the complexity of code required to produce
useful results is far simpler than found in even the most basic programming books
and courses—most of our programs will be ten lines of code or less. Basic knowl-
edge of MEL or a other scripting language should provide adequate background
experience.

Users with more programming experience should be able to generate scenes
from their own programs within a few weeks, allowing the development of cus-
tom modeling software without worrying about how the images will be rendered.

RenderMan’s most powerful feature is the control it gives over the appearance
of surfaces. Virtually any kind of surface texture, shading, or deformation can
be requested, and applied to any object. Defining high quality surfaces can be a

8 Essential RenderMan

complex task, taking in physics, mathematics, programming, and aesthetic con-
siderations, but in most cases the requirements of a particular surface for a single
shot are far simpler, and even a novice user can produce interesting results with a
little practice.

Though the mathematics of rendering can be somewhat complex most of this
is hidden within the rendering system itself, and with a few exceptions should not
be an obstacle. This book is aimed at a user who may not yet be technically skilled
but is prepared to become more involved in technical issues in order to produce
images of the highest quality.

Chapter 3

An Overview of the RenderMan
System

When the RenderMan standard was first proposed, computer graphics was still an
esoteric topic of research practised by skilled proponents. The typical expectation
was that these users would be writing their own programs to generate geometry,
probably in the C programming language. As a result, the first release of the
RenderMan API defined a set of C functions which could be called by modeling
programs to pass instructions to a renderer.

While the C API is an appropriate mechanism for researchers to use when com-
municating to a renderer, it rapidly became clear that for commercial production,
a more flexible mechanism was required. Users need to be able to generate a scene
on one machine, and then pass it to the renderer of their choice running on a ren-
derfarm. For this reason the RenderMan Interface Byte stream (RIB) file format
was introduced.

A modeling program will still make calls to the C API internally, but rather than
actually rendering, these will typically create a RIB file. These RIB files can then
be examined, modified, and finally passed to a stand-alone rendering program, per-
haps running on a completely different machine.

The interface between the modeler and the renderer is therefore typically in the
form of a RIB file. As a result, it is probably reasonable to say that the RIB file
format represents the RenderMan standard—a RenderMan compliant modeler
writes RIBs while a RenderMan compliant renderer reads RIBs.

While it is perfectly possible to simply rely on a modeling package to generate
RIBs, a great deal of power and flexibility can be gained from even limited knowl-
edge of the RIB format. RIB files are generally stored as text and can easily be cre-
ated or modified by a user. Though they do tend to contain rather a lot of numbers
representing points in 3D space which are hard to interpret manually, the overall
structure consists of a list of simple commands which can easily be identified and
understood. Even when working entirely within the modeling package, the inter-
face typically makes reference to RIB level features.

Though RIBs define the geometry of a scene, RenderMan distinguishes between
the shape of an object and its surface detail. Most objects are geometrically simple,
and can be represented by very primitive geometry. For example, an orange is basi-
cally a sphere. However, real objects differ from typical computer-generated objects

10 Essential RenderMan

in that on closer examination they display complex surface textures, and interact
with light in a range of interesting fashions. A real orange is not perfectly round, it
has pitting in the skin and an interesting waxy reaction to light.

While all modern rendering systems provide the user ways to control the sur-
face properties of an object, the RenderMan standard goes further by defining a
highly complex and flexible system where the surface properties of an object are
defined by “Shaders.” These take the form of short pieces of computer code writ-
ten in a RenderMan specific language called SL—short for Shading Language.
A renderer will typically be supplied with a program to convert shaders written
in this language into a format which that particular renderer can use. This is known
as the shader compiler.

When a surface is defined in a RIB file, it is simply marked as having a particu-
lar shader attached. When the scene is rendered, the renderer will look for that
shader, and use the code contained within it to calculate the appearance of the sur-
face. The ability to have such fine control over the appearance of a surface is what
that makes RenderMan renderers so powerful. On major projects which use
RenderMan the job of shader writer may fully occupy several highly skilled mem-
bers of the production crew. An understanding of shader writing is the key compo-
nent in claiming to be able to “use RenderMan.”

The RenderMan pipeline is summarized by Figure 3.1.

Modeling Package

Application Code

v

had
RenderMan C API Shader

Shader Compiler
RIB File l
Renderer Compiled
Shader
Image File

FIGURE 3.1. The RenderMan pipeline

Chapter 4
What do I Need?

The computing system used by Pixar to render their films has thousands of
processors, and is one of the most powerful clusters in existence. The cost of soft-
ware licenses for those machines would be outside the reach of all but the largest
of studios. However, at the other end of the scale, all the examples in this book
can be rendered with free software on low specification machines. A faster machine
will reduce the time you have to wait, and more expensive software may gener-
ate a better-looking image, but the rendering process is otherwise identical. The
information in this book applies equally to all the renderers, except where noted.
While having access to modeling software capable of interacting with
RenderMan will be helpful, it is not necessary to make use of this book.

Hardware

Traditionally SGI workstations were used for the kind of highend work that
RenderMan is associated with, but more recently these have been replaced by
Linux and Windows machines. With Apple’s move to the Unix-based MacOS X,
their systems are also starting to attract interest from production studios. The
underlying hardware and operating system has little direct impact on the render-
ing process and all of these platforms support RenderMan compatable renderers.
However, the scripting and networking facilities of the UNIX-based systems still
make them the preferred choice for experienced users.

The rendering process is a CPU-intensive task, which is little affected by other
parameters of the machine it is running on. A fast CPU is therefore a major asset,
but all of the scenes in this book may be rendered in a reasonable amount of time
on current hardware. As the complexity of scenes increases, more memory may be
required to render the scene efficiently. Memory can be particularly critical when
global illumination is being used, but this should not be a problem when simply
learning about the API. In extreme cases where very large scenes are being ren-
dered on multiple machines, network architecture, and disk input/output (i/o)
bandwidth become significant issues but these are of little concern to the new user.

11

12 Essential RenderMan

Though the machine used to generate the images simply requires CPU power
and memory, at some point you are going to view the images produced on screen.
When viewing images, ensure that your graphics card is in 24-bit mode (“millions
of colors”). While a lower color depth may give a rough idea as to the general
layout of the image, any fine detail will be lost, making quality work impossible.

Rendering Software

In order to work through the examples in this book and to produce your own
images, you will need a RenderMan compatable renderer. Exactly which one is
right for you depends on the needs and budget of the work you are aiming to pro-
duce. Fortunately, one of the key things about RenderMan is that you can start
small, learn a little, and then switch software as required. RenderMan provides a
common API, so when you learn to use one of these renderers you are learning
about all the others too.

At the time of writing the following RenderMan compatable renderers are
available:

PhotoRealistic RenderMan (PRMan) www.pixar.com

RenderDotC www.dotcsw.com.

AIR www.sitexgraphics.com

Agsis www.aqgsis.org

ART RenderDrive www.art-render.com

Angel www.dctsystems.co.uk

3Delight www.3delight.com

Pixie sourceforge.net/projects/pixie/
Summary

As RenderMan is an API rather than a renderer, software and hardware is avail-
able in a range of forms to suit virtually every kind of user. All of these renderers
should be able to render the examples used in this book, with a few minor excep-
tions. If you are able to install more than one, this will allow you to compare their
relative merits and help you understand how RenderMan makes working with
multiple renderers (and modelers) practical. Production notes, detailing specific
issues which might arise as you work through this book using some of the ren-
derers listed above are available from the books website, along with the code for
most of the examples presented.

Chapter 5
How to Use This Book

This book is divided into three parts. Part 1 which you’ve already read, gives a
general overview of the RenderMan architecture. By now you should have a good
idea how the various parts of RenderMan fit together, and how it operates within
a production pipeline. The remaining two parts discuss the creation of geometry
and shading.

Part 2 considers geometry. We start with a simple five-line RIB file, and learn
how to specify increasingly complex objects, from spheres and cones, through to
complex free-form surfaces, hair, and particle systems. Once you’ve got to grips
with RIB, you’ll learn how this knowledge can be used from the C programming
language. In addition to the actual shape of the objects themselves, Part 2 also
includes details of how colors and shaders are attached to objects, how the cam-
era is setup, and information on lighting your scene. Part 3 introduces you to writ-
ing shaders. Initially, we look at how the standard shaders operate, and progress by
adding increasingly complex patterns to surfaces. We examine how objects may be
given a more organic feel, through the use of noise, and use displacement shaders
to emboss patterns onto objects. The topic of antialiasing is discussed; we develop
surfaces which interact with light in unique ways, and new kind of lights which
shine in interesting patterns. Finally, we look at how Global Illumination has been
added to the RenderMan API.

Though there is necessarily an overlap between Parts 2 and 3, it should be pos-
sible to read each part independently. If you are interested in generating or mod-
ifying geometry, you can read only Part 2, while if you want to learn about shader
writing quickly then you can skip ahead to Part 3, referring back to Part 2 as
required. Both Parts 2 and 3 include numerous worked examples. Having read
each chapter, you should render the examples contained within it using at least one
renderer. All of the code in the book can be obtained from the book’s website.
The examples should be modified to verify their behavior, and explore the ideas
introduced

This book is not intended to provide an exhaustive reference to the RenderMan
APL It is intended as a tutorial, giving you a start into the RenderMan world. It
introduces the concepts, and shows you how to make use of them in a practical
fashion. In many cases, there are additional options or subtleties which are ignored

13

14 Essential RenderMan

for the sake of clarity. Most chapters include a section describing some of the
related commands and functions which you might like to investigate further. Details
of these commands along with other more general information on rendering can
be found in a number of more advanced books which are listed in the bibliogra-
phy. These should be referred to for more technically detailed information, once
you’re comfortable with the basic ideas.

Part 2

Geometry

Geometry is presented to the renderer either through a RIB file or the C APL
These are closely related, and once you have learnt one, it is relatively simple to
use the other. However, as the issues of C programming would only make the dis-
cussion of RenderMan more complex, we will at first restrict ourselves to using
RIB. The C API will be briefly introduced in a later chapter, on the basis that
proficient programmers will be able to cope with the required leap. Non pro-
grammers should simply skip this chapter.

Rather than attempt to cover each class of commands in turn, and provide a full
reference, we will start with a simple scene and extend it, introducing new con-
cepts and commands as required. The fine details of some commands will be
omitted where they are not required, as they can easily be looked up in the refer-
ence texts once the basic concepts are mastered.

The API will be introduced by a series of increasingly complex examples. Each
listing will be accompanied by a figure, so the code and resultant image can easily
be compared. Each chapter concludes with a list of related commands which are
more complex to use, or simply less useful. These are intended as suggestions for
further study which you can choose to investigate or ignore as required.

You should attempt to render and extend the examples in each chapter, as this
is the only method by which familiarity can be gained with the rendering process.
Except where noted, all the examples should work equally well regardless of the
renderer you use.

Chapter 6
A Simple Scene

Introduction

Perhaps the hardest part of using any package is actually generating your first
image. In this section we will produce a simple scene by creating a RIB file and
passing it to a renderer. In doing so, you will learn about the basic structure of a
RIB file, and gain the practical experience needed to progress further. This will
form the basis of the more complex examples in later chapters.

Making a RIB

In production, RIB files are often stored in a compressed form to save disk space,
but for our purposes we can simply store RIBs as text files. RIB files for high-
quality frames can be several gigabytes in size, but basic images can be produced
with only a few lines of text. One of the simplest possible scenes is a single sphere
in the centre of the screen. The RIB for this is in Listing 6.1, and the resultant
image is shown in Figure 6.1.

Listing 6.1 A minimal scene.

#min.rib - a minimal scene
Display “min.tiff” “file” “rgba”
Projection “perspective”
WorldBegin

Translate 0 0 2

Sphere 1 -1 1 360
WorldEnd

17

18 Essential RenderMan

FIGURE 6.1. A minimal scene

The RIB file contains a list of commands for the renderer. Typically these will
be positioned at the start of a line, and may be followed by a number of parameters.
These parameters are separated by spaces, and may be split across several lines if
necessary to make the file more readable.

You should type this RIB into the computer using any text editor (such as
NotePad, TextEdit, or Kate) and save it to disk. Though any file name could be
used, as this is one of the smallest possible RIB files we will call it “min.rib.”

—
What goes in a RIB?

We will now examine the contents of min.rib.

#comment

Anything which follows a # character up until the end of line, is ignored by the
renderer. You can therefore use that space to add any information which might be
useful to someone reading the RIB file. When modeling programs generate RIB
files they often use comments to indicate which object in the scene is currently
being described. In this case we have added a line which includes the name of the
file, and a brief description of the scene’s contents.

A Simple Scene 19

Display

The real work of this RIB file starts with a Display command indicating that
we want to create a file called min. tiff, containing RGB (red green blue)
color information. We have also requested the A (alpha) channel which contains
transparency information. This allows us to identify which parts of the scene con-
tain objects and which are background. In print, the background is drawn as white,
while when viewed onscreen the background may be drawn differently.

Replacing “file” with “framebuffer” will display the image directly on
the screen. Specific renderers may support additional output types, which will be
listed in the renderers’ own documentation.

Projection

The line beginning Projection tells the renderer that we want to use a stan-
dard perspective projection—Far away things will be drawn smaller than close up
things. A particular renderer may support other projections, but most rendering
uses this standard projection.

WorldBegin and WorldEnd

Having set up the renderer, telling it how to draw, and where to store the results,
we can start telling it about the things to be drawn. The command Wor1dBegin
informs the renderer that the setup phase is complete, and it should prepare to draw.
The related command at the end of the file Wor1dEnd informs it that the scene
is finished, and it can write out the final image.

Translate and Sphere

Between WorldBegin and WorldEnd we define the objects that we want in
our scene. In this case we have a single sphere, declared with the Sphere com-
mand, and positioned using the Translate command. Both of these will be
covered in greater detail in the following chapters.

Rendering a RIB

Having created a RIB file which describes a simple scene, we now want to turn
the RIB into an image by rendering it. Most rendering is done from the command
line rather than from a GUI so open a command prompt or shell and change to

20 Essential RenderMan

the directory in which you have created min.rib. It should then be possible to
render the scene by simply typing the render command followed by the name of
the RIB file.

The command needed to render the scene depends on the renderer you are
using:

PRMan prman min.rib
Agsis agsis min.rib
RenderDotC renderdc min.rib
Angel angel min.rib
3Delight renderdl min.rib
Air air min.rib

Refer to the documentation for your renderer to check what this command
should be.

If all goes well then the file “min. tiff” should be created, and can be viewed
using the image viewer of your choice. Depending on the renderer some diagnos-
tics may also be printed, but for a successful render these are typically minimal.

Troubleshooting

If the file min. tiff is not created then something has gone wrong. A likely
cause is simply that the rendering command has not been found. Check that you are
using the correct command for your renderer, and that the renderer is correctly
installed. You may need to set up the PATH environment variable to tell the shell
where the renderer is installed.

If the render is being found, check that the file min.rib exists and is in the cur-
rent directory. Make sure you have permission to write to the current directory so
that the image file can be created.

If these do not solve the problem then you are probably getting an error mes-
sage from the renderer such as “Unknown Keyword,” “Unknown Token,” or
“Parse Error. These indicate an error in the RIB file, and may also give a
line number. Check that you have entered the RIB commands correctly.

A Simple Scene 21

Summary

#This is a comment
Lines beginning with # are comments.

Display “name” “outputType” “rgba”
Specifies where the results should be sent and what information should be included
in those results.

Projection “perspective”
How 3D space should be transformed into a 2D image.

WorldBegin
WorldEnd
Mark the beginning and end of the scene.

Chapter 7
Moving Things Around

Introduction

Having created a basic framework for our scene we need to be able to orient and
position objects within it. In this chapter we will see how you can use transforma-
tions to move objects, resize them and rotate them, both individually and in groups.

Positioning Objects

The RIB file defines a 3D world which is initially empty. The first thing within that
world is the camera, and the position of everything else is specified in terms of its
relationship to that camera. In “min. rib” we created a single sphere, and moved
it using a Translate command. Had we not moved it, it would have been cen-
tered around the camera. The command used was Translate 0 O 2 indicat-
ing that the sphere was moved O units right, O units up and 2 units into the screen.

Translate is one of a group of commands known as transforms, which are used
to position objects. These apply to everything that follows them, so the Translate
command in min.rib appears before the Sphere command, which is on the follow-
ing line. We could move the sphere left by adding the command Translate
—1 0 0 after the current Translate and before the Sphere as shown in
Listing 7.1 and Figure 7.1. The two Translate’s are applied so that the
sphere is moved both two units back, and one unit left.

23

24 Essential RenderMan

Listing 7.1 Moving objects around.

#left.rib
Display “left.tiff” “file” “rgba”
Projection “perspective”

WorldBegin
#move everything back 2 units
Translate 0 0 2

#Everything that follows is one unit left
Translate -1 0 O
Sphere 1 -1 1 360

WorldEnd

FIGURE 7.1. Moving objects around

If you want to display two spheres, you could do so using the commands shown
in Listing 7.2, which uses a Translate to place the first sphere on the left, and
a second Translate to move the second sphere right. However, Figure 7.2
shows that rather than displaying one sphere on the left and the other on the right
as might be expected, this displays one on the left and one in the centre. The
thing we have overlooked is that transforms apply to everything that follows
them, so the first Translate moves the first sphere to the left but it also moves
the second sphere left, and the second Translate only moves it back as far as
the middle.

Moving Things Around 25

Listing 7.2 Multiple transforms.

FIGURE 7.2. Multiple transforms

——
Grouping Transforms

While we could simply use Translate 2 0 O to move the second sphere
further right, this would be tedious and difficult to keep track of in more complex
scenes. If you were to reposition the first sphere you would have to adjust the
second translation to keep the second sphere still.

26 Essential RenderMan

A better solution to this problem would be through the use of RenderMan’s
“hierarchical graphics state.” Basically, we can remember where we were and
go back to it later. This is done using the commands TransformBegin
and TransformEnd. TransformBegin remembers all the transformations
that have been declared previously, while TransformEnd restores
the state back to what it was at the previous TransformBegin. For
example:

TransformBegin
Translate =1 0 O
Sphere 1 =1 1 360

TransformEnd

draws a sphere offset to the left, but leaves things exactly as they were before
we started. If we now translate right and draw a sphere it will appear on
the right rather than just back in the middle as shown in Figure 7.3 and
Listing 7.3.

Listing 7.3 Grouping transforms.

#beginend.rib
Display “beginend.tiff” “file” “rgba”
Projection “perspective”
WorldBegin
#move everything back 2 units
Translate 0 0 2

TransformBegin
#Everything that follows is one unit left
Translate -1 0 O
Sphere 1 -1 1 360

TransformEnd

#Now we’re back in the middle...

TransformBegin
#Everything that follows is one unit right
Translate 1 0 O
Sphere 1 -1 1 360

TransformEnd

WorldEnd

Moving Things Around 27

FIGURE 7.3. Grouping transforms

—
Using Hierarchical Transforms

While this may seem a convoluted method of defining transforms, it allows parts
of the RIB to be grouped into logical blocks that reflect how elements of the scene
are connected together. This becomes more important when we use more com-
plex transformations.

For example, let us suppose you decide to use spheres to create a basic char-
acter. The character’s head can be defined as a sphere. To this, we need to add two
ears — also spheres — as in Figure 7.4. Listing 7.4 shows how one ear is translated
left, while the other is translated right. They are then positioned on top of his head
by a single translate applied to both.

Listing 7.4 A head with ears.

#ears.rib
Display “ears.tiff” “file” “rgba”
Projection “perspective”
WorldBegin
#move everything back
Translate 0 0 3

#Head
Sphere 1 -1 1 360

(Continued)

28 Essential RenderMan

FIGURE 7.4. A head with ears

We have made the ears from spheres, but scaled them to make them smaller.
The command for scaling is Scale and it takes three parameters allowing
objects to be scaled by varying amounts in the x, y and z directions. While the
ears are scaled equally in all directions, to create a nose we want a sphere
which is elongated away from the head. This corresponds to the z-axis, and

Moving Things Around 29

hence we make the third parameter of Scale slightly larger, as in Listing 7.5.
Note that we do not have to worry about the translations we have applied to
the ears, as these are within transform blocks. The TransformBegin and
TransformEnd commands allow us to position the nose relative to the head,
rather than the ears.

To make this stretching of the nose more obvious in Figure 7.5, we have rotated
the whole head with the Rotate command. Rotation is specified by an angle
through which to turn, and a line to rotate about. We want to rotate the head 45°
about the vertical (y) axis, so we specify a vector of 0,1,0.

Listing 7.5 A scaled nose.

30 Essential RenderMan

FIGURE 7.5. A scaled nose

Though the mechanism of specifying transformations seems strange, it allows
groups of commands to be treated as blocks. The nose is currently modeled by a
scaled sphere, but it could be replaced by something more complex, which itself
contained transforms, without affecting the rest of the RIB. The nose block draws
the nose relative to the head. We can then position the head relative to the body,
as in Listing 7.6. We can do this without worrying about the ears or the nose, as
they always follow the head. When we position the head, the nose and ears move
with it, as seen in Figure 7.6.

Listing 7.6 Putting the head on a body.

#body.rib
Display “body.tiff” “file” “rgba”
Projection “perspective”
WorldBegin
#move everything back
Translate 0 0 2.5
Translate 0 —-0.75 0

TransformBegin
Translate 0 1.
Scale 0.5 0.5
Rotate =30 0 1 0

30
0.5

#Head
Sphere 1 -1 1 360

Moving Things Around 31

FIGURE 7.6. Putting the head on a body

32 Essential RenderMan

A simple rule to remember is that transforms are applied from the centre out-
wards, so the nose is specified, and then scaled and positioned in relation to the
head. The head itself is positioned relative to the body, which is positioned rela-
tive to the camera.

Summary

Translate x y z
Scale x y z

Rotate angle x y z
TransformBegin
TransformEnd

Related Commands

Identity

This command resets the current transformation back to the way it was at
WorldBegin.

Transformabcdefghijklmnop
ConcatTransformabcdefghijklmnop

These allow transformations to be specified as a 4 by 4 homogeneous matrix.
This format is more complex than the simple commands, but allows any combi-
nation of scales, rotates, translations, and other transformations to be specified by
a single command. An introduction to homogeneous coordinate systems can be
found in most computer graphics books.

Chapter 8

Simple Surfaces

Introduction

RenderMan supports a broad range of surface types, capable of reproducing vir-
tually any shape. However, the more general surfaces can be difficult to use when
you are constructing RIB files by hand. In many cases, interesting scenes can be
constructed from simple geometric shapes such as spheres, cones, and cylinders
which can be rendered with the minimum of effort. In this chapter we’ll examine
some RenderMan commands to render these kinds of objects.

Spheres

We have already used the Sphere command in our scenes, allowing us to set up
basic renders, and experiment with transformations. So far, however, we have
avoided examining the command itself in any detail. If you consider that Sphere
takes four parameters it should become apparent that it is capable of more flexibility
than might first be thought.

The first parameter of Sphere specifies the radius—that is, the size of the
sphere. While this is geometrically identical to a scaled sphere of fixed radius, the
resulting image can be different when shading is taken into account. For now you
can simply choose whichever method of sizing your sphere is most convenient.
To position the sphere you must use Translate, as spheres are always created
at the origin.

The second and third parameters of the Sphere command allow you to clip
the bottom and top of the sphere, creating a ring. Any part of the sphere below
the second parameter or above the third is removed. For example, the command
Sphere 2 -0.5 1 360 would draw a sphere of radius two with most of
the bottom removed, and a little of the top clipped, as shown in Listing 8.1 and
Figure 8.1. Top and bottom are with respect to the z-axis, which normally points

33

34 Essential RenderMan

Listing 8.1 Clipping a sphere.

FIGURE 8.1. Clipping a sphere

into the screen, so to obtain a useful view of this we have rotated the sphere such
that z is aligned vertically.

The final parameter of the Sphere command is the sweep angle. Rather than
drawing the full 360° of the sphere you can choose to draw only part of it, rather like
a slice of a pie. In Listing 8.2 we have specified a sweep angle of 270°, so Figure 8.2
shows only three-quarters of a full sphere. Note that this sweep is about the z axis.

Listing 8.2 The sweep angle of a sphere.

Simple Surfaces 35

FIGURE 8.2. The sweep angle of a sphere

While Sphere is a somewhat limited modeling primitive, it demonstrates a
number of important issues about the RenderMan API. The command describes
what we want to be drawn, not how it should be drawn. In some other render-
ing APIs such as OpenGL you might have to provide a number of triangles or
rectangles describing the sphere, or at least specify the level of detail with
which it should be drawn. This leads to problems when you want to re-render a
scene at a higher resolution, or use an extreme zoom on a simple model. The
level of detail you have manually assigned for one image may not be appropri-
ate in another.

While RenderMan does have commands to control the quality of the final
image, the geometry we have passed to it is defined in a high level format. It is
up to the renderer to decide how a sphere can best be rendered, and from the sim-
ple description it should be able to produce an image which appears perfectly
smooth regardless of scale. While some renderers may choose to break the sphere
into triangles, others may prefer to deal with the sphere as a single object. Regardless
of how the renderer chooses to deal with geometry, this implementation detail
should always be hidden from us.

Though not particularly flexible, Sphere and the other the primitives intro-
duced in this chapter are very efficient to render and simple to texture, as we will
see in Part 3. They also represent a perfectly smooth surface in an incredibly
compact form, reducing RIB creation time and saving disk space. You should
therefore use these simple surfaces in preference to more complex geometry
when possible.

36 Essential RenderMan

Cones and Cylinders

In addition to spheres you can create other simple geometric surfaces including
cones and cylinders. Like spheres, these are always created at the origin and ori-
ented about the z-axis, then transformed to the required location. In addition they
all take a sweep angle, allowing only part of the object to be drawn.

To draw a cone you need to specify the height and the radius of the base
followed by the sweep. For example, Cone 2 0.5 360 draws a cone of
height 2, and a base radius of 0.5. The cone is positioned so that the origin is
at the centre of the base. A cylinder also requires a height and a radius.
However, rather than specifying a height above the base, as in the case of a
cone, a cylinder is allowed to extend both up and down the z-axis, and hence
you must specify two distances. Cylinder 0.5 -1 1 360 draws a cylinder
two units high (=1 to 1 along the z-axis) and 1 unit in diameter (twice the radius
of 0.5). These quadratic surfaces are shown in Figure 8.3, and the equivalent
RIB is in Listing 8.3.

Listing 8.3 A cone and cylinder.

#coneCyl.rib
Display “coneCyl.tiff” “file” “rgba”

WorldBegin
Rotate —90 1 0 O
Translate 0 -8 0

TransformBegin
Translate -3 0 -2
Cone 5 2 360

TransformEnd

TransformBegin
Translate 3 0 O
Cylinder 2 -3 3 360

TransformEnd

WorldEnd

Simple Surfaces 37

Al

FIGURE 8.3. A cone and cylinder

The parameters to Cylinder and Cone are summarized in Figure 8.4.

Zmax

Coneh R 6 Cylinder R Zin Zimax ©

FIGURE 8.4. The cone and cylinder commands

—
Tori

The Torus command is slightly more complex as it draws a doughnut. This
requires two radii—one known as the major radius from the centre of hole in the
torus to the centre of the actual “dough,” and the second minor radius defining the
thickness of the “dough.” These are followed by two sets of sweep angles as

38 Essential RenderMan

shown in Figure 8.5. The minor sweep is specified first. It has the additional
control of having both a start and end angle.

Major radius Minor radius

FIGURE 8.5. The torus command

Using only these simple primitives it is possible to construct relatively
complex scenes as seen in Figures 8.6 and 8.7. Once correctly shaded and
textured even the simplest geometry can produce visually interesting images.

FIGURE 8.6. A robot created using only simple surfaces

Simple Surfaces 39

FIGURE 8.7. Teddy bear

——
Summary

Sphere radius zmin zmax Sweep

Cylinder radius zmin zmax sweep

Cone height radius sweep

Torus majrad minrad phimin phimax sweep

—
Related Commands

Disk height radius sweep

This command draws a disk around the z-axis of the specified radius. Unlike the
other simple surfaces which are always centered at the origin the disk can be
moved along the z-axis using the height parameter. This is useful for capping the
end of cylinders which are otherwise open.

40 Essential RenderMan

Paraboloid rmax zmin zmax sweep
Hyperboloid x1 yl z1 x2 y2 z2 sweep

These commands draw two more complex geometric surfaces — the paraboloid
and hyperboloid. A paraboloid is simply the 3D equivalent of the 2D parabola
produced by the equation y = x? as shown in Figure 8.8. A hyperboloid is formed
by rotating a line about the z-axis. This can be used to produce disks, cones,
cylinders, lampshades and other more interesting shapes, as shown in Figure 8.9.
Though the hyperboloid is based on a straight line the resulting shape is curved
when the line is not parallel to the z-axis.

20
S
0
> 10
0
5 0 5
X

FIGURE 8.8. A parabola, and paraboloid

FIGURE 8.9. The hyperboloid

Chapter 9

Color and Other Attributes
of Objects

Introduction

In addition to the geometry itself, we often need to specify properties of an object
such as its color, which affect its appearance. In this chapter you will be intro-
duced to the most common attributes, and learn how they can be managed.

Color

The objects we have drawn so far have all been white. However, we can easily
specify that an object should be drawn in some other color by using the Color
command. Though RenderMan supports more complex forms of color control,
practically in all cases this is followed by three values enclosed in square brackets,
specifying the amount of red, green, and blue required in the object. For example,
if you want to make an object red you simply need to add the command: Color
[1 O O0]. Like transforms, colors apply to everything that follows them, so the
code in Listing 9.1 produces two red spheres. Of course this color is only a start-
ing point for determining the color the object will appear in the rendered scene,
as lighting and other shading effects must be taken into account, but in most cases
Color is used as the basis of the final result.

Listing 9.1 Using color.

#red.rib
Display “red.tiff” “file” “rgba”
Projection “perspective”
WorldBegin
#move everything back 2 units
Translate 0 0 2

(Continued)

41

42 Essential RenderMan

Color is just one special case of an “attribute.” Attributes are properties of
objects which modify the way they are drawn.

—
Grouping Attributes

In the same way that you use TransformBegin/End to manage the scope of
transforms, a similar pair of commands: AttributeBegin and AttributeEnd
save and restore the current attributes. Using AttributeBegin/End allows us to
draw an object, and be certain that it will have no effect on any other objects, as shown
in Listing 9.2. This selects red as the current color, and then enters an Attribute block.
Even though the color is changed to yellow in order to draw the left-hand sphere, the
previous color (red) is restored upon exit from the Attribute block, so the right sphere
appears red in Figure 9.1.

Listing 9.2 Controlling the scope of attributes.

Color and Other Attributes of Objects 43

FIGURE 9.1. Controlling the scope of attributes

Transformations are a special case of attributes, so AttributeBegin per-
forms the action of TransformBegin implicitly, and similarly for
AttributeEnd.

L
Opacity

A second important attribute is opacity. In the same way that the Color com-
mand allows you to specify how light is reflected from the surface, you can use
Opacity to specify how light is transmitted though the surface. When light is
shone at a surface from the front, the light reflected back depends on the color of
the light and the color of the surface. When a light is shone through a surface from
behind, then the color of the light seen through the surface depends on the color
of the light and the opacity of the surface. Opacity is therefore also specified as a
color. For example in Listing 9.3 we have asked the renderer to draw two spheres,
which overlap each other. The green sphere has a transparency of [0.5 0.5
0.5]—that is, it lets half of the red light through, half the green and half the
blue—hence you can see the red sphere inside the green one in Figure 9.2.

The opacity of a surface can potentially be very different to its color. For
example, stained glass is highly colored when viewer in transmitted light (opacity),
yet appears very dull or even black when viewed in reflected light
(color).You might set the color and opacity of red glassto [0.1 0.1 0.1]
and [1 0 O], respectively.

44 Essential RenderMan

Listing 9.3 Opacity.

FIGURE 9.2. Opacity

Color and Other Attributes of Objects 45

Other Attributes

ShadingRate

Calculation of position and final color is performed at multiple points on the
surface of each object. The number of points required for each object is automat-
ically calculated by the renderer, but under certain circumstances you might
want to modify the default value. This is controlled through the command
ShadingRate. The default shading rate of 1.0 should be adequate in most
cases, but a higher value (ShadingRate 3.0) allows you to trade quality for
reduced render times. A lower value (ShadingRate 0.4) forces the renderer
to use more points on the surface which may in some cases improve the quality
of the final image. The effect of increasing shading rate is shown in Listing 9.4
and Figure 9.3—note how the shading becomes less smooth and more blocky as
the shading rate is increased from left to right.

FIGURE 9.3. Changing the shading rate

Listing 9.4 Changing the shading rate.
Display “shading.tiff” “file” “rgba”
WorldBegin

Translate 0 0 6

ShadingRate 1
Translate =1.5 0 0
Sphere 0.5 -0.5 0.5 360

ShadingRate 2
Translate 1 0 O
Sphere 0.5 -0.5 0.5 360

(Continued)

46 Essential RenderMan

ShadingRate 4
Translate 1 0 O
Sphere 0.5 -0.5 0.5 360

ShadingRate 8

Translate 1 0 O

Sphere 0.5 -0.5 0.5 360
WorldEnd

Matte

When computer graphics are combined live action, a proxy object is sometimes
placed in the CG scene to represent a real world object which will later be com-
posited into place. This object should not appear in the final render, but will still
obscure objects behind it. Such an object is known as a matte, and hence this
property is specified by the Matte attribute. Matte 1 indicates that the object
should be treated in this special way, while Matte 0 specifies a regularly
rendered object.

Shaders

The shaders applied to an object to describe its surface characteristics are also
attributes but these are of sufficient complexity and importance that they deserve
a chapter in their own right.

Summary

AttributeBegin
AttributeEnd
Color [r g Db]
Opacity [r g b]
Matte bool
ShadingRate size

Color and Other Attributes of Objects 47

Related Commands

Sides n
Orientation “handedness”
ReverseOrientation

When you render an object it usually has a front and back, but provided the object
is opaque, from any single point of view you can only see the front. Even though it
seems obvious, you can not see the back of objects, the renderer may have to do a
lot of work to figure that out for itself. You may be able to reduce render time by
giving the renderer a hint that it only need draw half the object. If the Sides attrib-
ute is set to 1 then the renderer will immediately throw away the back of objects.

For various reasons the renderer may inadvertently throw away the wrong
side-removing the front rather than the back. You can control this by passing
“inside” or “outside” to the Orientation command. ReverseOrientation
tells it to draw the other side to the one it would normally draw.

Attribute “attributeType” “name” [val]

Though Pixar included many possible attributes in RenderMan standard, they
also included a mechanism for developers of renderers to add their own using the
Attribute command. These are typically arranged in groups, sharing a com-
mon first parameter, and then a more specific attribute name as the second.
The value of the parameter follows in square brackets. Refer to your renderer’s
documentation to find out what custom attributes it supports.

Chapter 10

Camera Setup

Introduction

A renderer is much like a camera in that it turns a three-dimensional scene into a
two-dimensional image. Just as a real camera has many controls that affect
exactly how the image should be recorded, so the renderer can record the same
scene in a range of different ways. In this section, we will examine some of the
options available for controlling the final image.

Options

Attributes control parameters that are specified on a per-object basis. In addition
to these, some parameters apply to the whole image. These can be considered
as defining the virtual camera that is being used to view the scene, and are known
as “options.” As options apply to the whole scene they cannot be changed while
a frame is being rendered. You can’t place option commands between World-
Begin and WorldEnd. We have already used two options: Display and
Projection, which control where the rendered image is to be stored, and how
three-dimensional space is to be reduced down to two dimensions.

Field of View

You may have noticed that many of the images produced so far appear distorted
at the edges of the frame. This is an artifact of the projection being used, and the
large field of view. By default an image rendered using the perspective projection
is rendered with a 90-degree field of view (Figure 10.1). As RenderMan measures

49

50 Essential RenderMan

FOV based on the shortest side of the image (typically the height), this corre-
sponds to an ultra-wide-angle—equivalent to a 12 mm lens on a 35 mm film cam-
era. You can reduce this distortion by moving the objects further away from the
camera and then reducing the field of view to simulate zooming in with a tele-
photo lens as shown in Figure 10.2. Field of view is specified by passing a “fov”
parameter to the perspective projection in Listing 10.1.

FIGURE 10.1. Field of view = 90°

Listing 10.1 Field of view = 20.

Camera Setup 51

FIGURE 10.2. Field of view = 20°

In the following chapters we will use this mechanism of passing parameters by
specifying their name followed by one or more values enclosed in square brack-
ets with many other commands.

——
Positioning the Camera

As the camera is the only fixed point of reference in our scene, it can not be
moved as such but we can produce the same effect by moving all of the objects
in the world. We have done this previously by placing transforms within the
WorldBegin/End block. However, by placing transforms after the Projection
command and before the Wor1dBegin command you can explicitly transform
the whole world. The position of the world is specified in terms of the camera,
objects are specified in terms of the world, and hence this effectively moves the
camera.

At present it will have no effect upon your images whether you place transforms
inside or outside of the world block, and merely serves as a useful convention to
distinguish camera movement from object movement. However, the ability to dis-
tinguish the position of an object relative to a static world even when the camera is
moving will become more important when we start to shade our objects in Part 3.

This is demonstrated in Listing 10.2.

52 Essential RenderMan

Listing 10.2 Setting options.

fexposure.rib
Display “exposure.tiff” “file” “rgba”
Format 640 480 1.0
Clipping 5 15
PixelSamples 2 2
Exposure 1.0 2.2
Projection “perspective” “fov” [25]
Translate 0 0 10
WorldBegin
Sphere 2 -2 2 360
WorldEnd

Clipping

When a scene is rendered, the renderer will try and discard any objects which are
too close or too far away from the camera. Those too far away are redundant
because they simply would not be visible, while objects close to the camera are
difficult to render, and probably off-screen anyway. However, the renderer needs
some hints as to what should be considered too close or too far away. You can
give the renderer this information using the Clipping command and its two
parameters, hither and yon.

Any part of an object closer than hither will be removed, as will those past
yon. Hither in particular is worth paying attention to if any geometry is close to
the camera, as by increasing its value only slightly you can dramatically improve
render times. When correctly set this option should not affect the rendered image.

The Clipping command is used in Listing 10.2, where the sphere is posi-
tioned 10 units back. Anything closer than 5 or further than 15 units is discarded.

Image Resolution

We have so far been rendering our images at 640 pixels wide by 480 pixels high,
as this is the default output resolution. However, you can control the resolution of
the final image by using the Format command. This takes a height and width
for the output image measured in pixels.

The third parameter to Format specifies the pixel aspect ratio. Most computer
displays have square pixels—an image 100 by 100 pixels would appear square on

Camera Setup 53

screen, but this is not the case for video formats which tend to squash the image
slightly. If your image is to be displayed on such a device then you need to make
sure this squash is taken into account during rendering by setting the pixel aspect
ratio appropriately. A frame for output on PAL video might therefore contain
the line Format 768 576 0.9.More immediately you might want to reduce
the size of the output image in order to speed up test renders using Format
320 240 1.0.

Super Sampling

Though Format specifies how many pixels the render needs to output, internally
it will calculate the color at many more points for each output pixel, averaging
them together to produce the final pixel color. This “super sampling” reduces
rendering artifacts, and produces a higher quality image, at the cost of additional
render time. You can control the number of points calculated per pixel by using
the PixelSamples command. A setting of PixelSamples 1 1 will render
quickly using only one sample per pixel, while a setting of PixelSamples
4 4 will evaluate 16 samples per pixels, roughly arranged in a 4 by 4 grid.

Exactly how many samples you need to use depends on the contents of your
image, and what you intend to use it for. Consider Figure 10.3 which consists of
three images rendered with increasing samples. The first image is clearly blocky
at the edges of the sphere, while the second is a distinct improvement. The third
image is marginally better but for this simple image the effect is not particularly
marked. When we start experimenting with advanced techniques such as depth of
field and motion blur you will probably need to increase the number of samples
used to avoid artifacts.

Listing 10.2 explicitly sets the output resolution and super sampling to their
default values of 640 480, and 2 2.

(a) (b) (c)
FIGURE 10.3. Pixel Samples (a) 11 (b)22 (c) 44

54 Essential RenderMan

Exposure

Having finally calculated the correct color of each pixel, we needs to display the
resultant image. Unfortunately such things are rarely simple. The value calculated
by the renderer is “linear”—that is a pixel with a brightness of 0.8 should appear
twice as bright as a pixel with a brightness of 0.4. While you probably consider
this a perfectly normal situation, it is not the result that is obtained when an image
is sent to a typical video device. Most devices have a nonlinear response, which
would result in the 0.4 pixel being much darker than it should be. This nonlin-
earity is known as gamma, and can be summarized for individual devices, or more
generally for a type of device by a single number. A gamma value of one would
represent a linear device, while most computer screens have a value in the range
1.5—2.0. Some official standards for video screens specify a gamma value of 2.2,
but this is not particularly reliable.

When previewing images it is important that you use imaging software which
corrects the gamma of the image being displayed to match the display on which
it is being viewed. However, when you are rendering the final results, which will
then be transferred to a specific output device such as video tape, a higher qual-
ity image can be produced by gamma correcting in the renderer. You can do this
by using the Exposure command (Listing 10.2), which takes two parameters —
gainand gamma. Gain is simply a multiplier which makes the image brighter or
darker. Gamma controls the contrast, and generates a nonlinear image. Figure 10.4
is rendered with a gamma of 2.2, resulting in the edges of the sphere which have
previously been very dark, appearing much lighter.

FIGURE 10.4. Increasing gamma

Camera Setup 55

If your output device requires a gamma correction of 2.2 then including the
command Exposure 1.0 2.2 will produce an image with a better balance
between the light and dark areas when viewed on the target output device. Viewing
on a linear device would make it appear washed out. You should only use this
approach when the image generated is being sent directly to the output device, as
any compositing or color correction that may be done post-render cannot be
applied to nonlinear images. In such cases it would be more appropriate to output
linear images, which can be gamma corrected after they have been processed.

Summary

Projection “projectionname” “fov” [angle]
Clipping hither yon

Format xres yres pixelaspect

PixelSamples x y

Exposure gain gamma

Related Commands

PixelFilter “filtername” xwidth ywidth

While it may appear counterintuitive, simply adding together all the samples
generated for a pixel does not produce the best possible final image. For reasons
that are somewhat complex, a higher quality image can be produced by weight-
ing the samples such that samples near the centre of the pixels are considered
more important. Samples from outside the pixel’s boundary should also be
included, some samples even being subtracted rather than added. The method
used to calculate the average pixel color is controlled by the PixelFilter
command.

Quantize Scale min max dither

By default most renderers will produce an eight bits per channel image, with
black being stored as zero, and white being stored as 255. The Quantize
command allows images to be stored at a higher level of detail such as 16 bit or
floating point format, and gives some control over how brightness levels are
represented.

56 Essential RenderMan

I«

Option “OptionType” “name” [val |

Just as the Attribute command allows renderers to define new properties of
objects, so the Option command allows additional camera controls not originally
included in the RenderMan API to be specified.

Chapter 11
Lighting

Introduction

A well-constructed scene consists of more than just objects and a camera. The
positioning and control of lighting is an essential aspect, whether you are attempt-
ing to create a realistic, theatrical, or cinematic look. In this chapter, we will look
at the various types of light that are available in RenderMan, and see how you can
use these in a RIB file. These will allow you to illuminate your scene in a more
interesting fashion than the default lighting we have so far been using.

A Plastic Object

All the objects we have created so far have had a simple lighting model applied
to them—surfaces directly facing the camera are bright, while those at an acute
angle appear darker. This default model gives an adequate sense of shape and has
allowed us to create basic scenes, but for greater realism we need surfaces which
can react to light in more interesting ways.

One of the most powerful features of a RenderMan renderer is support for
shaders. These allow the appearance of an object to be controlled in almost any
way imaginable. We will consider shaders in the following chapter, but more
immediately we need something which can be lit by the lights we are about to cre-
ate. The shader “plastic,” which produces the standard computer-generated look,
is perfect for this. You simply need to include the line Surface “plastic”
in the RIB file and any object that follows will be made out of plastic.

Upon attaching the plastic shader and rendering the scene you should be
rewarded with a totally black image. The default surface is self-illuminating,
but most shaders including plastic require some kind of lighting—as in real life
without any lights, a plastic object will simply appear black.

57

58 Essential RenderMan

Pointlight

You can create a light by using the LightSource command. Like surfaces,
lights are controlled by shaders, but several standard lights are available. The
“pointlight” shader creates a light that shines equally in all directions, rather
like a naked light bulb. By default it is centered at the origin, but we can move it
around using the standard transform commands. Alternativly, we can place the
light using a “from” parameter, as in Listing 11.1. Parameter lists of this kind
can be applied to many commands—we used them previously to specify the field
of view of the camera—and take the form of a parameter name followed by an
array of values enclosed in square brackets. Fortunately, parameters always have
default values so we can ignore any parameters that we are not interested in.

Listing 11.1 Pointlight.

#pointlight.rib
Display “pointlight.tiff” “file” “rgba”
Format 640 480 1.0

Projection “perspective” “fov” [30]
Translate 0 0 5

WorldBegin
LightSource “pointlight” 1
“from” [-2 2 -2]
“intensity” [7 1]
Surface “plastic”
Color [1 0 O]
Sphere 1 -1 1 360
WorldEnd

For a “pointlight” the only parameter other than “from” you will regularly
need to modify is “intensity.” When first placed in a scene the pointlight
source often appears dim because it is defined to obey an inverse square law—for
each doubling of the distance from the light the intensity drops by a factor of four.
This is exactly how lights behave in the real world, but many other renderers use
a different lighting model, as nonphysically based lights can make it easier to
light scenes in an aesthetically pleasing (though less realistic) fashion. It is very
simple to create nonphysically accurate lights in RenderMan, but for now you
need simply note that intensity will probably have a value greater than one, as it
will be attenuated by the distance from light to surface.

The result of illuminating a red plastic sphere with a point light source is shown
in Figure 11.1 (also Plate I).

Lighting 59

FIGURE 11.1. Pointlight (also Plate I)

The number following the shader name is a light source “handle” — simply a
unique number you can use to refer to the light. This allows you to create lights
at the beginning of a scene, and then apply them only to certain objects, giving
greater control. As an alternative to using a number to identify a particular light
source, most modern implementations of RenderMan will also allow you to give
the light a name. Simply use a string as the handle (for example, “myLight”) in
place of the number.

The I1luminate command is used to turn lights on and off, and takes two
parameters: a light handle followed by 1 for on or O for off. This is shown in
Listing 11.2 (also Plate I) where one light source and two spheres are created,
but T1luminate is used to turn off the light source for the right sphere. As a
result in Figure 11.2 only the left sphere is lit, while the other remains black.

Listing 11.2 Turning a light off and on.

#illuminate.rib

Display “illuminate.tiff” “file” “rgba”
Projection “perspective” “fov” [20]
Translate 0 0 10

WorldBegin
LightSource
“pointlight” “myLight”
“from” [3 3 -=5]
“intensity” [25]

(Continued)

60 Essential RenderMan

Surface “plastic”
Color [1 O O]

AttributeBegin
Illuminate “myLight” 1
Translate —-0.5 0 0
Sphere 1 -1 1 360
AttributeEnd

AttributeBegin
Illuminate “myLight” 0
Translate 0.5 0 0
Sphere 1 -1 1 360
AttributeEnd

WorldEnd

FIGURE 11.2. Turning a light off and on (also Plate I)

The state of a light source is an attribute, and hence it is possible to save and
restore the currently active lights using AttributeBegin/End.

Distantlights

While the point light has a position, but no orientation, certain light sources have an
orientation, but effectively no position. These are known as “distantlights”
and are typically used to represent daylight. The illumination of an object lit by

Lighting 61

the sun changes little as the object moves within the scene (excluding shadows).
However, illumination is highly dependent on the object’s orientation—is it fac-
ing towards the sun or away from it?

To create a “distantlight” you therefore need to specify a “to” parameter
that describes the direction in which the light is shining. Listing 11.3 creates a
light shining to the right, the results of which can be seen in Figure 11.3 (also
Plate I).

Listing 11. 3 Distantlight.

#distantlight.rib
Display “distantlight.tiff” “file” “rgba”

Projection “perspective” “fov” [30]
Translate 0 0 5

WorldBegin
LightSource “distantlight” 1
“to” [1 0 0]
“intensity” [1]

Color [1 O O]

Surface “plastic”

Sphere 1 -1 1 360
WorldEnd

FIGURE 11.3. Distantlight (also Plate I)

62 Essential RenderMan

Spotlights

Just as in cinema or theatre, when maximum control over the lighting of scene is
required, you should use some form of spotlight. The standard “spotlight”
shader provided with all RenderMan implementations behaves like a standard
theatrical spotlight and hence has both a position and an orientation, specified
using a “from” and a “to” parameter.

The “from” of a spotlight specifies its postion, while “to” specifies a point
towards which the spot is shining. In Listing 11.4 we have created a spotlight,
illuminating a plastic sphere. By specifying “to”as [0 0 0] the spotlight
points towards the centre of the sphere. A spotlight produces a circular beam as
shown in Figure 11.4 (also Plate I).

Listing 11.4 Spotlight

#spotlight.rib
Display “spotlight.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate 0 0 5

WorldBegin
LightSource “spotlight” 2
“from” [-2 2 -2]
“to” [0 0 0]
“intensity” [7]
“coneangle” [0.25]
“conedeltaangle” [0.05]

Color [1 0 0]

Surface “plastic”

Sphere 1 -1 1 360
WorldEnd

Lighting 63

FIGURE 11.4. Spotlight (also Plate I)

A spotlight also allows you to control exactly how directional the light is using
the “coneangle” and “deltaangle” parameters, illustrated in Figure 11.5.
Outside the “coneangle” (specified in radians) the light has no effect, while
within coneangle—-deltaangle the full intensity of the light is in effect.
Between these two angles the light falls-off smoothly producing a soft edge to the
beam. This can be seen in Figure 11.6 (also Plate I) where the delta angle
(specified in Listing 11.5) has been increased to produce a softer edge to the light.

FIGURE 11.5. Cone angle and delta angle

64 Essential RenderMan

Listing 11.5 Softening the edge of a spot.

#delta.rib
Display “delta.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate 0 0 5

WorldBegin
LightSource “spotlight” 2
“from” [-2 2 -2]
“to” [0 0 0]
“intensity” [7]
“coneangle” [0.25]
“conedeltaangle” [0.25]
Color [1 0 0]
Surface “plastic”
Sphere 1 -1 1 360
WorldEnd

FIGURE 11.6. Softening the edge of a spotlight (also Plate I)

Ambient Lights

In the real world, each light source would emit light into the scene which would
then bounce from surfaces, and illuminate other surfaces which are not directly
lit. In computer graphics this is known as global illumination and is modeled

Lighting 65

using techniques like photon mapping. While we will consider global illumina-
tion in a later chapter, all methods of global illumination are slow, and, therefore,
must be used sparingly. In many cases, you can fake this indirect illumination by
simply adding a little extra light to each surface using an “ambientlight”
source.

An ambient light as defined in Listing 11.6, illuminates all surfaces equally
regardless of their position or orientation. A consequence of this is that, it
removes clues as to the depth of the scene. This can be seen in the resultant
image in Figure 11.7 (also Plate I) which is totally flat. However, if you use an

Listing 11.6 Ambientlight.

#ambientlight.rib
Display “ambientlight.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate 0 0 5

WorldBegin
LightSource “ambientlight” 1
“intensity” [0.5]

Color [1 0 0]

Surface “plastic”

Sphere 1 -1 1 360
WorldEnd

FIGURE 11.7. Ambientlight (also Plate I)

66 Essential RenderMan

“ambientlight” in combination with other lights, adding as little as possible
to avoid areas of total black, it can soften your lighting and produce a better
image. Listing 11.7 takes this approach to produce the image in Figure 11.8
(also Plate I).

Listing 11.7 Ambient and spotlight.

#spotambient.rib
Display “spotambient.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate 0 0 5

WorldBegin

LightSource “ambientlight” 1
“intensity” [0.1]

LightSource “spotlight” 2
“from” [-2 2 -2]
“to” [0 0 0]
“intensity” [7]
“coneangle” [0.25]
“conedeltaangle” [0.05]

Color [1 0 O 1

Surface “plastic”

Sphere 1 -1 1 360
WorldEnd

FIGURE 11.8. Ambient and spotlight (also Plate I)

Lighting 67

Many renderers support other lights in addition to the standard ones. Uberlight,
for example, provides a much greater degree of control than any of the standard
lights, including options for avoiding many of the inconveniences of physics.
Details of any additional light types will be provided in the documentation for
your renderer.

Summary

Surface “shadername”
LightSource “shadername” handle
Illuminate handle bool
LightSource “pointlight” I
“from” [x y z]
“intensity” [val]
“lightcolor” [r g b]
LightSource “distantlight” 2
“to” [x y z]
“intensity” [val]
“lightcolor” [r g b]
LightSource “spotlight” 3

“from” [x y z]

“to” [x y z]
“intensity” [val]
“lightcoloxr” [r g b]
“coneangle” [angle]

“conedeltaangle” [angle]
LightSource “ambientlight” 4

“intensity” [val]

“lightcolor” [r g b]

Chapter 12
The Standard Surface Types

Introduction

Having set up some lights, we can now consider how those lights interact with the
surfaces in our scene. This interaction is controlled by a surface shader. Shaders
are one of the most important aspects of RenderMan, to such an extent that the
second half of this book will be totally dedicated to creating new shaders. However,
before we consider how you can write your own shaders we will first examine the
standard shaders that are defined by the RenderMan standard and are available by
default in all renderers.

Shaders are attatched to objects using the Sur face command followed by the
name of the shader to be used. They are attributes, as they are are applied on a per
object basis, and hence can be stored and recalled by AttributeBegin and
AttributeEnd.

Constant

The simplest surface is “constant.” Even simpler than the default surface we
have used earlier, the constant shader simply takes the color defined in the RIB
and uses it as the output color, ignoring all lighting in the scene. Naturally, this
results in a totally flat appearance, as in Figure 12.1 (also Plate II), and is of
limited use when generating photorealistic images. You might choose to use it,
however, to produce images that are deliberately stylized, or for images that are
going to be postprocessed.

Listing 12.1 shows the basic RIB file used in this chapter. A spotlight is used
to provide the key light of the scene, while an ambient is used to fill in the dark
side. The shader—in this case “constant”—is attached to a sphere using the
command Surface. To better illustrate the shaders appearance we have also
displayed it on a more complex object.

69

70 Essential RenderMan

FIGURE 12.1. The “constant” shader (also Plate II)

Listing 12.1 The “constant” shader.

I
Matte

For most applications, we require something which takes into account the light-
ing of the scene, and the position of the surface to give an appearance of depth.
This can be achieved using the surface shader “matte,” as shown in Figure 12.2
(also Plate II). This simulates the diffuse scattering of light from a rough surface
(such as a brown envelope). When light in the scene hits a matte object it is
scattered in all directions. As a result the color of the surface as it appears when
rendered is independent of where you place the camera.

The Standard Surface Types 71

/‘ ™
(\ i

FIGURE 12.2. The “matte” shader (also Plate II)

As with most of the other surface shaders, “matte” also responds to ambient
light that has no direction. The amount of ambient and diffuse light scattered by
the matte surface can be scaled using the parameters “Ka” and “Kd,” respectively.
For example, to create surfaces which are unaffected by ambient light we could
use the command Surface “matte” “Ka” [0]. The matte shader should not be
confused with the Matte attribute command. The two are totally unrelated and
the unfortunate clash of names is purely coincidental.

Metal

Metallic objects are usually identifiable by the way they reflect bright light, cre-
ating a sharp specular highlight. In contrast to the “matte” shader, the location
of this bright spot on the surface is highly dependent on the position of the
observer. Light hitting a metallic surface is reflected as if in a mirror, and only
when viewed from near the mirror angle will the highlight be visible.

Of course not all metal surfaces are as highly polished, and in these cases, the
light will be scattered in a cone around the mirror angle, the size of which depends
on the roughness of the surface—a rough surface will produce a less sharply
defined highlight, while a smooth surface would produce a small and sharp bright
point.

You can simulate these effects by use of the “me tal” shader which is illustrated
in Figure 12.3 (also Plate II). The brightness of the highlight can be controlled by
the “Ks” parameter, while the size of the highlight is set by the “roughness”
parameter (Figure 12.4 and Plate III).

72 Essential RenderMan

® O

FiGURE 12.3. The “metal” shader (also Plate II)
a J b
c d

FIGURE 12.4. (a) roughness = 0.01 (b) roughness = 0.05 (¢) roughness = 0.1 (d) roughness
= 0.2 (also Plate III)

The Standard Surface Types 73

—
Plastic

If you examine a plastic surface, you should be able to observe that such materials
generally combine both a diffuse and a specular component. Colored plastic is
manufactured by suspending particles of color inside a clear “glue.” Light can
either be reflected in a specular fashion from the smooth surface of the glue
producing a white highlight, or scattered randomly from the colored particles like
a matte surface. The “plastic” shader shown in Figure 12.5 (also Plate II)
therefore has the properties and parameters of both “matte” and “metal.”
In addition, it allows the color of the specular highlight to be controlled by the
parameter “specularcolor”.

FIGURE 12.5. The “plastic” shader (also Plate II)

When you create a metal surface, it is likely that you will find the standard
metal shader difficult to control. Its lack of a diffuse component results in sur-
faces that are difficult to light evenly. In such cases you can create a metallic
appearance using the plastic shader by setting “specularcolor” to be the
same as the standard RIB color. For example:

Color [1 O 0]
Surface “plastic” “Kd” [0.1] “Ks” [0.9]
“specularcolor” [1 0 0]

Setting Ks to 1 and Kd to 0, would produce results identical to the metal shader,
but by slightly increasing Kd (and reducing Ks), you can fill in some of the
dark areas of the surface without relying too heavily on ambient light. This is
demonstrated in Figure 12.6 (also Plate IIT) which uses the plastic shader to create
a more controlled metallic appearance.

74 Essential RenderMan

FIGURE 12.6. Using “plastic” to stimulate metal (also Plate III)

—
Painted Plastic

The most complex standard shader, “paintedplastic”, extends plastic by
allowing a texture map to be used to control the base color, rather than the uniform
RIB color. The name of the image file is passed to the shader using the parameter
“texturename,” as in Listing 12.2. If you were to apply the texture file shown
in Figure 12.7, the resultant image would be Figure 12.8 (also Plate III).

Listing 12.2 The “paintedplastic” shader.

#painted.rib
Display “painted.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate 0 0 5

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “spotlight” 2
“from” [-2 2 =2]
“to” [0 0 O]
“intensity” [7]
“coneangle” [0.25]
“conedeltaangle” [0.05]

The Standard Surface Types 75

Color [1 0 O]
Surface “paintedplastic”
“texturename” [“swirl.tiff”]
Rotate 90 1 0 O
Sphere 1 -1 1 360
WorldEnd

FIGURE 12.7. A sample texture

FIGURE 12.8. The “paintedplastic” shader (also Plate III)

The format of the image file is dependent upon the renderer, and while many
renderers will accept the TIFF file format, in most cases you can increase
rendering speeds by using a format specific to the renderer. These formats are
optimized for texture lookup, and can dramatically reduce memory requirements
when rendering images with large textures. For PRMan the command to generate
these optimized image files is txmake—running the command “txmake
image.tiff image.tx” creates a new texture file “image.tx,” optimized for
PRMan’s use. Other renderers will have their own texture formatting tools, described
in their documentation.

76 Essential RenderMan

Summary

Surface “constant”
Surface “matte”“Ka” [1]

\\Kd" [l]
Surface “metal”“Ka” [1]
\\KSII [l]

“roughness” [0.1]
Surface “plastic”
“Ka” [1]
“Kd” [0.5 1]
“Ks” [0.5 1]
“roughness” [0.1]
“specularcolor” [1 1 1]
Surface “paintedplastic”
“Ka” [1]
“Kd” [0.5 1]
“Ks” [0.5 1]
“roughness” [0.1]
“specularcolor” [1 1 1]
“texturename” [Y]

Related Commands

Displacement “name” . . .

Surface shaders are used to control the surface color of an object but
RenderMan supports many other types of shaders that you can use to control
other aspects of the rendering process. One shader of each type may be attached
to an object.

A displacement shader, specified with the Displacement command
(Listing 12.3) allows you to deform a surface, adding creases, bumps, scratches,
or other fine details which would be difficult to produce using geometry. Such
a shader is demonstrated in Figure 12.9 (also Plate III). Note that the displacement
shader is specified in addition to a surface shader—the surface is still made
of plastic even though it has been displaced. Though there are no standard
displacement shaders, many renderers ship with a number of displacement
shaders such as “dented.”

The Standard Surface Types

Listing 12.3 A displacement shader.

#dented.rib

Display “dented.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate 0 0 5

WorldBegin

LightSource “ambientlight” 1

LightSource “spotlight” 2
“from” [-2 2 -2]
“to” [0 0 O]
“intensity” [7]
“coneangle” [0.25]
“conedeltaangle” [0.05]

Color [1 O 0]

Surface “plastic”

Displacement “dented”

Sphere 1 -1 1 360
WorldEnd

“intensity”

[

0.1]

FIGURE 12.9. A displacement shader (also Plate III)

77

Chapter 13

More Complex Surfaces

Introduction

While objects like spheres and cones have allowed us to create elegant geometry
from a small number of simple commands, we clearly need more flexible surfaces
that will allow us to model a wider range of shapes. In this chapter, we will intro-
duce a number of surface types that allow you to create almost any form of object.

Polygons

Though it has a number of limitations, the easiest method of constructing a
surface is to approximate it using a number of flat polygons. This allows you to
produce any shape to any required level of detail. In fact many non-RenderMan
renderers use polygons as their only form of geometry.

You can generate polygons in RenderMan by using the Polygon command,
which draws a single polygon. The corners of this polygon are specified as points
in counter-clockwise order by a parameter “P.” For example, the command shown
in Listing 13.1 draws a unit square in the xy plane, as can be seen in Figure 13.1.
This polygon has four corners, but any number may be used provided that they
are coplaner—that is, the polygon must be flat.

Listing 13.1 A simple polygon.

fpolygon.rib
Display “polygon.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate -0.5 -0.5 3

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]

(Continued)

79

80 Essential RenderMan

LightSource “pointlight” 2
“from” [-2 2 =-2]
“intensity” [7]

Color [1 0 0]
Surface “plastic”
Polygon “P” [0 0 O
00
10
10]
WorldEnd

FIGURE 13.1. A simple polygon

General Polygons

The Polygon command also has the restriction that the polygon must be
convex: if you draw a line from any point in the polygon to any other point in the
polygon, that line is not allowed to cross any of the edges of the polygon. To ren-
der concave polygons you must use the command GeneralPolygon. This is
slightly more complex to use, as it also allows you to cut holes into the polygon.
Despite the relaxing of other restrictions general polygons must still be planer.
A general polygon is made from one or more “loops,” each of which may
contain any number of points. The first loop defines the boundary of the polygon,
while subsequent loops cut holes into it. To define a GeneralPolygon you
must first tell the renderer how many points comprise each loop, and then pro-
vide an array containing all of the points, for each loop in turn. For example, in
Listing 13.2 the GeneralPolygon command is followed by an array with two

More Complex Surfaces 81

elements: 4 and 3 indicating that the polygon to be drawn is a quadrilateral (actually
a square) with a triangle cut out from it. The first four points of the “P” parameter
define the square, and the next three define the triangle, as shown in Figure 13.2.

Listing 13.2 A general polygon.

FIGURE 13.2. A general polygon

82 Essential RenderMan

O —
“Curved” Polygons

When you connect polygons together to create a more complex model, there is
invariably a crease where two parts meet, as seen in the top half of Figure 13.3.
While this is an accurate representation of the geometry we have passed to the
renderer, this crease is undesirable if we are using polygons to approximate a
curved surface. The problem is that while the two surfaces are joined together
without a gap, there is still a sharp change in the orientation of the surface as seen
in Figure 13.4a, which results in an obvious change in the shaded color. To make
things worse, our eyes are particularly tuned to pick out these kinds of edges.

FIGURE 13.3. Phong shading
. \)))%
. \>)/|\k</

FIGURE 13.4. Surface normals

More Complex Surfaces 83

You can reduce this artifact, and create a smoother appearance by interpolating
normals across the surface, as in Figure 13.4b—a technique known as Phong shad-
ing. While the surfaces are still flat, the orientation of points on the surface are
faked so the points on coincident edges are not only in the same place but are
shaded to have the same color. To achieve this effect in RenderMan you must
explicitly assign normals to the vertices of the polygon using the “N” parameter.
The polygons in the bottom half of Figure 13.3 are identical to those in the top half,
but Listing 13.3 reveals that surface normals have been added so that points on the
edge where the two polygons meet are shaded similarly on both sides of the join.

Listing 13.3 Phong shading.

(Continued)

84 Essential RenderMan

1.0 0.45 0.0
0.5 0.45 -0.25]
SN[0.00 0 1.0
-0.25 0 0.5
-0.25 0 0.5
0.00 0 1.0]

WorldEnd

The surface is shaded as if it were a smooth curve from one side to the other.
However, close examination of the profile of the object reveals that it is still in
fact comprised of two flat polygons. Phong shading is a useful trick that can help
to hide the limitation of polygonal models but if your intention is to create a
smoothly curving surface then the results will always be an approximation.

Patches

Despite their flexibility, the use of polygons is not always a good idea. Though
many simple renderers handle polygons well, they do not fit comfortably into the
complex shading pipeline that high quality rendering requires. You should only
use polygons for objects consisting of large flat surfaces, rather than using many
tiny polygons to approximate curves surfaces. RenderMan provides commands to
create curved surfaces directly and wherever possible you should use these in
preference.

The starting point for these curved surfaces is the humble Patch command.
Before considering curved patches, however, we must look at flat patches, which
are technically known as bilinear. A bilinear patch is much like a polygon but it
always has four corners. While this limitation makes it more difficult to model
with, there are pay-offs at the shading stage. Listing 13.4 demonstrates the
creation of a patch, and generates a square identical to the polygon shown in
Figure 13.1.

More Complex Surfaces 85

Listing 13.4 A patch.

#patch.rib
Display “patch.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate -0.5 -0.5 3

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “pointlight” 2
“from” [-2 2 -2]
“intensity” [7]

Color [1 0 0]
Surface “plastic”
Patch “bilinear” “P” [

H R oo
o ooo

WorldEnd

Though the Patch command may appear very similar to the Polygon com-
mand, it should be noted that a bilinear patch always has four points in the “P”
array, and the order of the vertices has changed, as patches are specified a row at
a time, rather than as a path around the boundary. The different ordering of points
is illustrated in Figure 13.5. Unlike polygons, patches need not be planer, and
hence we can create patches like the one in Listing 13.5. Here we have twisted
the top two points so the patch is no longer planer as can be seen in Figure 13.6.
The same set of points are not valid parameters to the Polygon command, and
would not render reliably in different renderers.

Polygon

FIGURE 13.5. Ordering of points

86 Essential RenderMan

Listing 13.5 A curved “linear” patch.

FIGURE 13.6. A curve “linear” patch

More Complex Surfaces 87

Cubic Patches

If you took nine bilinear patches and arranged them into a grid as in Figure 13.7a
you could approximate a curved surface by moving those points around to form
something like Figure 13.7b. However, the surface would look even better if
instead of joining the points together using flat patches we could somehow fit
curves through the points as in Figure 17.6c.

This is exactly what happens when we use a bicubic patch. We need 16 points,
which are specified as a row at a time, as shown in Figure 13.8, to create the

c

FIGURE 13.7. Joining patches: (a) a group of patches (b) approximating a curve (c) inter-
polatiging the points

FiGure 13.8. Control points in a cubic patch

88 Essential RenderMan

necessary faceted surface, which is known as a control hull, and then the renderer
simply fits a perfectly smooth curved surface to that hull.

We have created a bicubic patch in Listing 13.6. While it is somewhat hard to
interpret, the points around the edge of the grid have been placed in a square,
while the points in the centre have been displaced up and down to create an inter-
esting surface, as seen in Figure 13.9.

Listing 13.6 A bicubic patch.

#fcubic.rib
Display “cubic.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate —-0.5 -0.5 3

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “pointlight” 2
“from” [-2 2 -2]
“intensity” [10]

Color [1 0 0]
Surface “plastic”
Rotate 40 1 0 O
Patch “bicubic”

“P” [0O 0 0.40 0 0.6 0 0 10 0
00.40 0.40.4 3 0.60.4-3 10.40
0 0.6 0 0.4 0.6-3 0.60.6 3 10.60
01 0 0.41 0 0.61 0 11 01

WorldEnd

FIGURE 13.9. A bicubic patch

More Complex Surfaces 89

Rib Archives

Creating objects by hand using patches and polygons is tricky and time consum-
ing. Of course normally models would be produced using interactive software
from which a RIB file can be exported. Most software also provides an option to
create RIB files containing single objects rather than a complete scene.

You can import objects into your own scene using the command ReadArchive
followed by the name of the file, as in Listing 13.7. The contents of the archive are
included in the scene at render time, just as if you had copied and pasted them into
your RIB file. The imported RIB file should contain no options or other scene setup
commands, but only the attribute and geometry commands to draw a specific object.

Listing 13.7 Importing an object.

#cubic.rib
Display “cubic.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Translate -0.5 -0.5 3

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “pointlight” 2
“from” [-2 2 -2]
“intensity” [10]

ReadArchive “teapot.rib”

WorldEnd

Summary

Polygon

GeneralPolygon [nverts per loop]
Patch “type”

ReadArchive “filename.rib”

Related Commands

PointsPolygons [nverts per loop | [loop verts | . ..
PointsGeneralPolygons [loops per poly | [nverts per loop |
[loop verts | . ..

When polygons are used to model a surface, you inevitably have many polygons
with corners and edges in common with their neighbours. Rather than passing

90 Essential RenderMan

such a surface to the renderer through a large number of separate Polygon
commands, you can combine many polygons together in a single command
using the PointsPolygons and PointsGeneralPolygons commands.
By exploiting the shared vertices, the RIB file will be more compact, and the
renderer can treat the set of polygons as a single object.

PatchMesh “type’ nu uwrap nv vwrap . . .

In the same way you can combine polygons using PointsPolygons, patches
are often specified in groups using the PatchMesh command. PatchMesh
creates a mesh of points nu by nv square. This is particularly useful for bicubic
patches, as it ensures that individual patches join together smoothly. By setting
uwrap and vwrap to be “periodic” or “nonperiodic” you indicate if the
opposite edges of the mesh should be joined together.

Basis ubasis ustep vbasis vstep

When using bicubic patches the renderer must produce a smooth curve based on
the points it has been given. The exact manner in which this is done is controlled
by the Basis command. While some methods produce curves which pass
through every point, others only use the points as a guide. Some methods make it
easier to stitch patches together while others give better control over the surface
itself. It is possible to specify different forms of curve fitting for the rows and
columns of the patch.

NuPatch nucv uorder uknot umin umax nvcvs vorder
vknnot vmin vmax . . .
TrimCurve nloops ncurves order know min max nu v w

Though bicubic patch meshes are very versatile there are some forms of curva-
ture which even they can only approximate. Yet more complex surfaces can be
described using Non-Uniform Rational B-Splines (NURBS), which are generated
by the NuPatch command. Though NURBS patches have much in common
with the simpler patches, the parameters to the NuPatch command are probably
too complex to construct by hand. Despite this complexity, the greater flexibility
afforded makes NURBS surfaces the preferred primitive in most high end mod-
eling packages. RenderMan also allows NURBS to be trimmed using the
TrimCurve attribute—holes may be cut into the surface, and edges removed.

Chapter 14
Shadows

Introduction

The lights we have used so far have not cast any shadows. While this is acceptable
for simple images, shadows are essential if any form of realism is to be established.
Shadows tie objects to the surfaces they are resting on, and provide additional
visual cues to the relationship of objects in a scene. In this section, we will see how
shadows can be created in RenderMan.

Shadow Maps

Though most renderers now support ray traced shadows, the standard method of
creating shadows in RenderMan is through the use of shadow maps. This approach
is slightly tedious to setup by hand, but it does offer better performance and
greater flexibility. Most modeling software can ask RenderMan to generate these
maps automatically so there is little additional work for the end user.

The principle of a shadow map is to create a file that contains information
about which points are in shadow with respect to a particular light source. To cre-
ate this file the image is simply rendered from the position of the light, but rather
than recording the color of each pixel the renderer records the distance from the
camera to the front-most object, as illustrated in Figure 14.1. This is known as a
Z buffer, and it defines a pseudosurface—objects behind this surface will be in
shadow, while those infront will not. This process is repeated for each light in the
scene (or at least all those that are required to cast shadows).

91

92 Essential RenderMan

FIGURE 14.1. A Z buffer

Once a shadow map has been generated for the light, the main render (or
beauty pass) can take place. When the renderer needs to determine if a point is in
shadow with respect to a particular light, it can consult that light’s shadow map.
The position of the point in the shadow map is calculated, and if the point is
further from the light than the distance recorded in the map it is in shadow.

Generating a Shadow Map

In practice, we might start with a simple scene consisting of an object resting on
a ground plane lit by a spotlight, and an ambient fill light. Such a scene is in
Listing 14.1, but as you can see in the rendered image in Figure 14.2 (also Plate V),
the teapot does not cast a shadow onto the plane.

Shadows 93

Listing 14.1 Scene without shadows.

#noshadow.rib

Display “noshadow.tiff” “file” “rgba”
Projection “perspective” “fov” [30]
Rotate =20 1 0 O

Translate 0 -1 5

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “spotlight” 2
“from” [0 4 0]
“to” [0 0 O]
“intensity” [7]
“coneangle” [0.3]
“conedeltaangle” [0.05]
Surface “plastic”
ReadArchive “teapot.rib”

Color [O 1 0]
Patch “bilinear” “P” [-5 -1 -5

5 =1 =5
=5 =1 5
5 =l 5]

WorldEnd

FIGURE 14.2. Scene without shadows (also Plate V)

94 Essential RenderMan

To add a shadow to the spot the first thing we need to do is render a Z buffer
from the position of the spotlight. This is done by placing the camera at the position
of the light. When viewed from this position the scene appears as in Figure 14.3
(also Plate V).

FIGURE 14.3. The scene viewed from the light source (also Plate V)

Rather than recording the color of each pixel we modify the Display com-
mand, instructing the renderer to record “z”, the distances to the visible surfaces
as in Listing 14.2. We have also changed the output type from file to zfile,
though this is not necessary for all renderers. As the light casts a conical beam,
the Format command has been modified to create a square image, capturing all
of the points that the light illuminates. The result of this render is an image that
is dark where there is a surface close to the camera and brighter where objects are
further away, as shown in Figure 14.4.

Shadows 95

Listing 14.2 Creating the Z buffer image.

FIGURE 14.4. The Z buffer image

96 Essential RenderMan

In addition to the depth information, a shadow map also needs to contain infor-
mation about the camera it was rendered with to enable points to be correctly
looked up. Camera information is combined with the depth information by the
MakeShadow command, on the last line of Listing 14.2. This takes a Z buffer
that has been rendered and adds the necessary details before writing it to a
shadow map file. The field of view of the camera need not be the same as the
angle of the light, and the orientation need not be the same, though significant
variation would result in wasted time rendering the unused information.

You can use Z buffer images for many purposes besides shadows. By record-
ing the depth of each pixel as well as its color, effects such as fogging, and depth
of field can be added to a scene as a 2D postprocess. Such an approach is often
preferred in a commercial production, as it allows the depth effect to be quickly
changed at the composting stage without re-rendering the scene.

Applying a Shadow Map

Having created the shadow map we now return to the original version of the
scene and replace the “spotlight” with a light of type “shadowspot”, as
in Listing 14.3. This behaves identically to a normal spotlight except that it casts

Listing 14.3 Scene with shadows.

#withshadow.rib
Display “withshadow.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Rotate =20 1 0 O
Translate 0 -1 5
WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “shadowspot” 2
“shadowname” [“map.shad”]
“from” [0 4 0]
“to” [0 0 0]
“intensity” [7]
“coneangle” [0.3]
“conedeltaangle” [0.05]

Surface “plastic”
ReadArchive “teapot.rib”

Color [O 1 0]

Patch “bilinear” “P” [-5 -1 -5
50 =18 -5
=5 =1 5

5 -1 5]

WorldEnd

Shadows 97

shadows based on the map passed in by the parameter “shadowname.”
Rendering with the new light produces the image found in Figure 14.5
(also Plate V). If your renderer does not support a light of type shadowspot
try adding the shadowname parameter to a regular spotlight, as some systems
have chosen to replace the standard spotlight with one that supports shadows,
rather than add a second light type.

FIGURE 14.5. Scene with shadows (also Plate V)

Note that the shadows are cast by the objects in the map, not by the geometry in
the final render, so if an object is required not to cast a shadow, it should simply not be
included in the RIB used to generate the map. Similarly, in Listing 14.4 we have removed
the teapot from the scene, but it is still included in the shadow map. The image in
Figure 14.6 (also Plate V), therefore, still contains the shadow of the removed object.

Listing 14.4 Shadow without an object.

#noteapot.rib

Display “noteapot.tiff” “file” “rgba”
Projection “perspective” “fov” [30]
Rotate =20 1 0 O

Translate 0 -1 5

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “shadowspot” 2
“shadowname” [“map.shad”]

(Continued)

98 Essential RenderMan

FIGURE 14.6. Shadow without an object (also Plate V)

You can also make point lights cast shadows in a similar fashion using the
shadowpoint light shader, but six shadow maps are required to cover the faces
of a cube enclosing the light. Multiple shadow maps may also be used to handle
semitransparent objects.

Shadows 99

Ray-Traced Shadows

While depth-mapped shadows are fast and efficient, for certain effects it is more
practical to ray trace shadows—in cases where the object is semitransparent for
example. Ray-traced shadows explicitly test the path between the surface and
the light source to see if any objects are blocking the light. As might be
expected, this can be particularly time consuming as every other object in the
scene must be tested to see if it is the one blocking the light path. To enable ray-
traced shadows for a particular light source you simply need to set the shadow-
name parameter (which usually represents a shadow map file) to be
“raytrace,” as in Listing 14.5. This produces an image similar to Figure 14.5
in a single pass, but that pass may take longer than the two passes required
when using shadow maps.

Listing 14.5 Ray-traced shadows.

#raytrace.rib
Display “raytrace.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Rotate =20 1 0 O
Translate 0 -1 5
WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “shadowspot” 2
“shadowname” [“raytrace”]
“from” [0 4 0]
“to” [0 0 0]
“intensity” [7]
“coneangle” [0.3]
“conedeltaangle” [0.05]

Surface “plastic”
Attribute “visibility” “transmission” [“opaque”]
ReadArchive “teapot.rib”

Color [O 1 0]
Attribute “visibility” “transmission” [“transparent”]

Patch “bilinear” “P” [-5 -1 -5
5 =1 =5
=5 =1 5
5 -1 5]
WorldEnd

To speed this process up not all objects are considered as potential casters
of shadows. For example, in the case of our example scene the teapot can cast
shadows, but the ground plane cannot cast shadows on the teapot or itself, so in

100 Essential RenderMan
Listing 14.5 the ground is marked with the visibility attribute that it is transpar-

ent to ray traced shadows, while the teapot is marked as opaque. This is discussed
further in Chapter 30.

Summary

MakeShadow “zBufferFilename” “ShadowMapFilename”
LightSource “shadowspot” handle

“from” [x y z]

“to” [x vy z]
“intensity” [val]
“coloxr” [r g b]
“coneangle” [angle]

“conedeltaangle” [angle]
“shadowname” [“Filename”]
Attribute “wisibility”
“transmission” [“transparent”]
Attribute “wisibility”
“transmission” [“opaque”]

Related Commands

FrameBegin framenumber
FrameEnd

The creation of shadow maps can be done in the same RIB file as the beauty pass
by use of FrameBegin and FrameEnd, which allow multiple frames to be
stored in the same file. Simply place FrameBegin/End around those com-
mands which relate to each frame.

Display “ShadowMapFilename” “shadow” “z”

The standard method of shadow map creation is to first generate an interim Z
buffer file which is then converted to a shadow map by the MakeShadow
command. In most implementations of RenderMan, however, you can streamline
this process by specifying an output device of type “shadow.” When this is used,
the image written to disc automatically gets the appropriate camera information
added, and the MakeShadow command becomes obsolete.

Chapter 15
Motion Blur and Depth of Field

Introduction

Photorealism in computer generated images is often dependent not on accurately
modeling the real world, but in recreating the viewers’ expectations of what an image
of the real world should look like. Real world images are captured using cameras
which have physical limitations and defects, while the simulated digital camera can
easily be made theoretically perfect. High quality photorealistic renderers must
allow the user to specify a more complex camera model which reintroduces the
artifacts that users expect to see in photographs and films.

In this section, we will see how the physical limitations of a real camera can be
introduced back into the “perfect” virtual camera normally found in computer
graphics to produce a more realistic image.

Motion Blur

Setting up the Shutter

While the simulated camera is perfectly capable of capturing the scene instantly,
a real camera needs to expose light onto a film. The camera’s shutter must be
open for a length of time to allow enough light to enter the lens so that an image
can be created. Any objects which are moving while the shutter is open will
appear blurred. Any movement of the camera will result in the blurring of the
whole scene.

The length of exposure is a property of the camera and hence applies to the
whole scene, making it an Option that you must specify prior to Wor1dBegin.
The command to specify this is Shutter, which takes two parameters: the time
at which the shutter opens and the time at which the shutter closes. The absolute

101

102 Essential RenderMan

values of these parameters have no effect, but simply provide a reference for
defining motion, and therefore simplicity we can set them as Shutter 0.0
1. 0—the shutter opens at time zero and closes at time one.

Note that in a real camera the timing of the shutter would significantly affect
the brightness of the image, but here the two effects have been decoupled allow-
ing you to set each to its optimal value. The Exposure command controls
brightness while the Shutter command only affects motion blur. Though in a
real camera the controls interact in complex ways this only makes operation more
difficult, and separating the features like this provides greater flexibility.

Defining Motion

When motion blur is in use, most of the scene will still be rendered normally, blur
only being applied to those objects which are moving. Objects are positioned by
the use of transformations, and hence you can specify that objects are moving by
providing a pair of transforms, representing the object’s position at the start and
end of the shutter period. To indicate that a pair of transformations is a motion
rather than simply two consecutive transforms you should enclose them within
the commands MotionBegin and MotionEnd.

This is demonstrated in Listing 15.1, which contain a propeller rotating 30°
about the x-axis in the time period 0—1. The image rendered with and without
motion blur is shown in Figure 15.1. Each motion block must contain exactly

Listing 15.1 Transformation motion blur.

Display “motion.tiff” “file” “rgba”
Shutter 0 1

Format 640 240 1.0
Projection “perspective” “fov” 30

Rotate 90 0 1 O
Translate -5 0 0

WorldBegin
LightSource “ambientlight” 1 “intensity” [.3]
LightSource “distantlight” 2 “from” [5 10 -10]

“to” [0 0 0]
“intensity” [0.7]

MotionBegin [0 1]
Rotate -15 1 0 0
Rotate 15 1 0 O

MotionEnd

ReadArchive “prop.rib”

WorldEnd

Motion Blur and Depth of Field 103

b

FIGURE 15.1. A propeller: (a) Without motion blur. (b) With motion blur

one set of transforms, so if an object was both spinning and translating, two
consecutive motion blocks would be used, one for the Rotate and one for the
Translate.

Depending on the renderer you are using it may be possible to specify more
complex motion paths by positioning the object at several locations during the
exposure, as shown in Listing 15.2, where a sphere is translated up and then back
down, as it moves from left to right. The resulting image is in Figure 15.2. The
array following MotionBegin contains a list of sample times, and there should
be one transformation in the block for each. Separate motion blocks may contain
different numbers of samples, at different times, from which the renderer will
calculate the resulting motion.

104 Essential RenderMan

Listing 15.2 A more complex motion path.

FIGURE 15.2. A more complex motion path

Deformation Blur

In addition to the blurring of objects due to transformations, objects may also
require blurring because they are changing shape. You can achieve this effect in
a similar way to transformation blur by placing several instances of the object
inside a motion block. This is demonstrated in Listing 15.3, where a sphere
decreases in size while the shutter is open.

Motion Blur and Depth of Field 105

Listing 15. 3 Deformation motion blur.

#deform.rib

Display “deform.tiff” “file” “rgba”
Projection “perspective” “fov” [30]
Shutter 0 1

Translate 0 0 5

WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “spotlight” 2
“from” [-2 4 -2]
“to” [0 0 O]
“intensity” [10]

Color [1 0O 0]
Surface “plastic”
MotionBegin [0 1]

Sphere 1.0 -1.0 1.0 360
Sphere 0.5 -0.5 0.5 360
MotionEnd

WorldEnd

In principle, it should be possible to motion blur the parameters to virtually
any command using this approach, though the level of support for motion blur
is variable between renderers. Most support the blurring of transformations,
though fewer support deformation. Not all renderers support sample times other
than the start and end of the shutter period, and many have problems with non-
linear paths such as those generated by motion blurring a rotation.

Depth of Field

An effect similar to motion blur is depth of field. Again, it is an artifact of real cam-
eras that we must mimic in our computer-generated imagery so it meets the cine-
matic expectations of the audience. Only objects that are at a certain distance from
the camera are in focus, and any object significantly closer or further away will
appear blurred. Though complex to calculate, depth of field provides important
visual cues about the relationship of objects and may also be used for dramatic effect.
Depth of field is specified by the option command DepthOfField which
takes three parameters: the f-stop, the focal length, and the focal distance. While
these parameters are very familiar to traditional photographers, and allow the
camera to be matched to live action shots for effects work, they are somewhat
confusing when first encountered in a pure computer graphics context.

106 Essential RenderMan

Focal Distance

The simplest parameter is focaldistance. This is simply the distance from
the camera at which objects will be perfectly in focus. By animating this param-
eter over several frames you can draw the attention of the audience from one
object to another.

In order to relate synthetic depth of field to the real world effect, we will
assume that one unit in the RIB file corresponds to 1m. Listing 15.4 sets up a row
of spheres at distances from 1 to 7m. It also includes a depth of field command.
The third parameter of DepthOfField specifies the focal distance and this has
initially been set to 2. The resulting image in Figure 15.3a shows that the third
sphere from the front is in sharp focus while those further back are increasingly
blurred. By contrast in Figure 15.3b we have moved the focal distance back to
5m, using the command DepthOfField 2.8 0.100 5 resulting in a highly
blurred foreground.

Listing 15.4 Depth of field.

#near.rib
Display “near.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

DepthOfField 2.8 0.100 2
Translate 0 0 1

WorldBegin
#1 Meter
Translate 0.3 0 O
Color [1 0 0]
Sphere 0.25 —-0.25 0.25 360

Translate -0.2 0 0.5
Color [O 1 0]
Sphere 0.25 -0.25 0.25 360

Translate -0.2 0 0.5
Color [0 0 1]
Sphere 0.25 -0.25 0.25 360

Translate -0.2 0 0.5
Color [1 0 O]
Sphere 0.25 —-0.25 0.25 360

#3 Meters
Translate -0.2 0 0.5
Color [0 1 0]
Sphere 0.25 -0.25 0.25 360

Translate -0.2 0 0.5
Color [0 0 1]
Sphere 0.25 —-0.25 0.25 360

Motion Blur and Depth of Field

Translate -0.2 0 0.5
Color [1 0 0]
Sphere 0.25 -0.25 0.25

Translate -0.2 0 0.5
Color [O 1 0]
Sphere 0.25 -0.25 0.25

#5 Meters

Translate -0.2 0 0.5
Color [0 O 1]
Sphere 0.25 —-0.25 0.25

Translate -0.2 0 0.5
Color [1 0 O]
Sphere 0.25 -0.25 0.25

Translate -0.2 0 0.5
Color [0 1 0]
Sphere 0.25 -0.25 0.25

Translate -0.2 0 0.5
Color [0 O 1]
Sphere 0.25 —-0.25 0.25

WorldEnd

a

360

360

360

360

360

360

107

b

FIGURE 15.3. (a) A short focal distance of 2m (b) A larger focal distance of Sm (also Plate VI)

Focal length

The focallength parameter is a property of a particular lens, as it describes
the extent to which it bends light. When using a real 35mm camera, a typical
wide-angle lens might have a focal length of 35mm while a telephoto lens could
be 200mm or greater. All things being equal, a longer lens will produce a more
blurred image, as only those objects very close to the focal distance are in
focus. A shorter lens is more forgiving, and objects stay sharp over a larger
range of distances.

108 Essential RenderMan

In order to demonstrate this we have used a focal distance of 4m so the spheres
in the centre of the row will be in focus. In Figure 15.4a we have used a 60mm
lens (DepthOfField 2.8 0.060 4) corresponding to a typical medium
lens while the image in Figure 15.4b uses a 150 mm lens lens (DepthOfField
2.8 0.150 4). As you can see in Figure 15.4a, all the spheres except the
closest are in sharp focus, while in Figure 15.4b the foreground is extremely out
of focus, and some blurring can be seen in the last two spheres.

a

FIGURE 15.4. (a) A short focal length. (b) A long focal length (also Plate VI)

F-Stop

Perhaps the most confusing parameter for the nonphotographer is the f-stop.
However, put most simply: a small f-stop value will produce a lot of blurring,
while a larger £-stop value will produce less. In a real camera, suitable values
might be between 1.8 and 22, but this need only be a starting point for experi-
mentation. In the images used so far, a f-stop of 2.8 has been used to ensure
that the effect is noticeable, but in practice a larger value would often be used.
Figure 15.5a uses a 100 mm lens, focused at 4m with an f-stop of 2.8, lens
(DepthOfField 2.8 0.100 4)and produces obvious blurring in the image.
However, in the otherwise identical Figure 15.5b we have increased the f-stop
to 8 (DepthOfField 8 0.100 4)and the image is significantly sharper. Taken to
the extreme, a very large £-stop will remove depth of field effects completely.

Motion Blur and Depth of Field 109

a

FIGURE 15.5. (a) A small f-stop value (b) A large f-stop value (also Plate VI)

In a real camera f-stop is related to the size of the aperture, and hence how
much light can enter the camera. Specifying the focal length of the lens also
implicitly controls the field of view. However, as was the case for motion blur,
these effects are decoupled in the synthetic camera, allowing you to control
image brightness and field of view with Exposure and Projection,
respectively.

——
Summary

Shutter starttime endtime

MotionBegin [sampletimes...]

MotionEnd

DepthOfField f-stop focallength focaldistance

Chapter 16
The C API

Introduction

Having established the basic concepts of describing scenes to a renderer using the
RIB file format, we can now transfer that knowledge to the more complex, but
more powerful C form of the RenderMan interface.

Overview

The RIB file format is an effective way to distribute scenes for rendering, but as
a method of generating geometry it can be a little tedious. To create 100 spheres
you would need to type the Sphere command 100 times into the RIB file.
Specifying large numbers of coordinates for patches and polygons by hand is also
highly error prone. While viewing and modifying RIB files is a powerful tech-
nique of debugging and adapting renders, most RIBs are generated automatically
by programs. Even if you are not planning to write your own programs, much of
the documentation of RenderMan is written in terms of the C API, and so under-
standing the nature of the C interface is invaluable.

The C API consists of a set of functions declared in the header file “ri.h”,
which are called by the user’s code. Each of these functions corresponds to a sin-
gle RIB command, and hence adapting between the two interfaces is relatively
straightforward. When the program is compiled it is linked with a RIB library so
that when the program is run, a RIB file is written to disk which can then be ren-
dered in the usual way. This process is shown graphically in Figure 16.1. It may
also be possible to link directly to your renderer, in which case running the
program will generate the image in a single step.

Of course it is also perfectly practical to generate RIBs by simply printing out
the relevant commands. Though this may appear a little simpler at first, using the
official functions provides an additional level of error checking, and flexibility.

111

112 Essential RenderMan

ri.h
Header File

Execute Program

v

myScene.rib
RIB File

myProg.c

C Compiler
Source Code

myProg.o
Object File
Renderer
librib.a Linker
RIB Library
¢ myScene.tiff

Image File

myProg
Compiled
Program

FIGURE 16.1. Compiling a RenderMan C program

A first C Program

A RenderMan client program must call the function RiBegin () before any
other RenderMan function in order to initialize the renderer, and it must end by
calling RiEnd (). Between these function calls you can execute the rendering
commands you have used in RIB files, by calling functions whose names are
the same as in RIBs but with the prefix Ri (Rendering Interface) attached. For
example a sphere is created by the function RiSphere (). A C program that will
generate our first RIB file (Listing 6.1) is shown in Listing 16.1.

The C API 113

Listing 16.1 A simple C program.

As there is a direct correspondence between RIB commands and C functions,
all of the previous techniques described in RIB form can be applied in C. The
C API is more flexible, however, as we can use C code to generate RIBs that are
far more complex than you could ever hope to produce by hand. For example,
to generate a RIB similar to Listing 15.4, which we used to explore depth of
field, you would use a for loop as in Listing 16.2. To extend the line of spheres
indefinitely is trivial in the C code, but incredibly tedious using RIB.

Listing 16.2 Using a for loop

114 Essential RenderMan

Parameter Lists

The C language has a far more complex syntax than the RIB file format which
is simply a list of explicit commands. Because of the increased flexibility, the
C API cannot always guess what we are trying to do in the same way as the
renderer can, and hence it occasionally needs extra hints. In particular, param-
eter lists such as the parameters of a shader are somewhat tricky to handle. As
in RIB files, a C parameter list consists of tokens (parameter names) and val-
ues (arrays of data). In C, however, values are always passed to the renderer
through pointers, which can produce somewhat convoluted code. Typically an
array is created which contains the values, and then the array is passed to the
Ri function.

The C language also needs some method of knowing how many different
parameters are in each list. This is done by terminating the list with RI_NULL.
You must make sure you include this at the end of each parameter list, as failure
to do so will cause your program to crash. Listing 16.3 demonstrates a simple

Listing 16.3 Passing a parameter list.

/* param.c - create a linear */
#include <ri.h>

int main(int argc, char =xargvl[])

{

RtPoint square(4]={{0,0,0},{1,0,0},{0,1,0},{1,1,0}};
RtColor red={1,0,0};

float fov=30;

RiBegin (RI_NULL) ;
RiDisplay (“param.tiff”, “file”, “rgba”,RI_NULL) ;
RiProjection (“perspective”,
“fov”,6 &fov,
RI_NULL) ;
RiTranslate (-0.5,-0.5, 3);
RiWorldBegin () ;
RiColor (red) ;
RiPatch (“bilinear”,
“P” ,square,
RI_NULL) ;
RiWorldEnd () ;
RiEnd () ;
return 0;

}

The C API 115

parameter list which we’ve used to create a linear patch similar to that in Listing
13.4. Listing 16.3 also uses a parameter to specify the field of view. You should
note that even though “fov” only takes a single float value it is still passed via
a pointer. Colors are passed using the type RtColor, which is, again, actually
an array.

Many commands that we have already used support parameter lists even
though we have safely ignored them when using the RIB API. For example, all
geometry commands can use parameter lists to specify “varying” parameters.
While most properties of an object are “uniform” in that they apply to the
whole surface, we sometimes want an attribute to change over the surface. In
Listing 16.4 we use a varying value of “Cs” (the shading language name for the
surface color) on a Patch. Each of the four colors is attached to a corner of the
patch and blended across it, replacing the uniform color specified by the Color
command in Figure 16.2 (also Plate VI). You can use the same approach to vary
other shader parameters over a surface, but they must be declared as “varying”
in the shader.

Listing 16.4 Blending colors on a surface.

#cubic.rib
Display “cubic.tiff” “file” “rgb”
Projection “perspective” “fov” [30]
Translate 0 0 3
WorldBegin
LightSource “ambientlight” 1
“intensity” [0.1]
LightSource “pointlight” 2
“from” [2 2 2]
“intensity” [10]
Surface “plastic”
Rotate 40 1 0 O
Translate -0.5 -0.5 0

Patch “bicubic” “P” [00 0 0.40 0 0.60 0 10 O
00.40 0.40.4-3 0.60.4 3 10.40
00.60 0.40.6 3 0.60.6-3 10.60
01 0 0.41 0 0.61 0 11 0]

“cs” [100

010

001

1111

WorldEnd

116 Essential RenderMan

FIGURE 16.2. Blending colors over a surface (also Plate VI)

L
Declaring Parameter Types

In the case of the patch used in Listing 16.3, it is relatively clear that the array “P”
must contain four elements, each being a point. In many cases, however, there
may be no way of interpreting a parameter without additional information. For
example, a shader which takes a parameter “x”, might define “x” as either a
color, a float, or even an array of floats. The only way to determine this would be
by reference to the shader itself.

While most renderers are capable of extracting this information, you usually
need to provide the C API with a hint to tell it how to handle each value passed
into it. The function RiDeclare can be used to specify the type of a variable
before it is passed through the C API. This is demonstrated in Listing 16.5
where the surface shader “myConstantSurface,” requires a parameter
“customColor” of type “uniform color.” You can usually find the correct
type of a variable by reference to the documentation or shader source.

Listing 16.5 Declaring a parameter type.

/*declare.c - declare the type of a shader parameter*/
#include <ri.h>

int main(int argc, char “argv[])

{

RtPoint square([4]={{0,0,0},{1,0,0},{0,1,0},{1,1,0}};
RtColor red={1,0,0};

float fov=30;

The C API 117

RiBegin (RI_NULL) ;
RiDisplay (“declare.tiff”,“file”, “rgba”,RI_NULL) ;
RiProjection (“perspective”,
“fov”, &fov,
RI_NULL) ;
RiTranslate (-0.5,-0.5,3);
RiWorldBegin () ;
RiDeclare (“customColor” ,“uniform color”) ;
RiSurface (“myConstantSurface”,
“customColor” ,red,
RI_NULL) ;
RiPatch (“bilinear”,
“P”,square,
RI_NULL) ;
RiWorldEnd () ;
RiEnd () ;
return 0;

}

As an alternative to RiDeclare you can include the parameter type in the
paramteter name:

RiSurface (“myConstantSurface”,
“uniform color customColor”, red,
RI_NULL) .

Both this format and Declare can also be used in RIB files, though depend-
ing on your renderer you may not be required to use them as often as when
programming C.

Certain other functions explicitly require hints as additional parameters. For
example, the RIB command Polygon can work out for itself the number of
points in the polygon, but the C equivalent RiPolygon function requires the
number of vertices as its first parameter.

Light Sources

When you declare light sources in a RIB file you must specify a handle, so that
you can refer to the same light later in the file. The C API uses the same concept
but rather than the user providing their own handle, the handle is calculated by
the RiLightSource() function and passed back to the user as a variable of
type RtLightHandle. To create a light you therefore need to use code like that
in Listing 16.6.

118 Essential RenderMan

Listing 16.6 Declaring a light.

—
Summary

RiBegin (RI_NULL) ;

RiEnd () ;

RiSphere (rad,zmin, zmax, theta, ...,RI_NULL) ;

RiPatch (“type”, ...,RI_NULL) ;

RiPolygon (nverts, ...,RI_NULL) ;

RiColor (color) ;

RiDeclare (“varName” ,“varType”) ;

RtLightHandle myLight=RilLightSource (“type”, ...,
RI_NULL) ;

Chapter 17

Particles and Hair

Introduction

When modeling dust, explosions, fur, hair, and other similar phenomena we often
require not hundreds of surfaces but perhaps tens or hundreds of thousands. In
order to deal with these demands Points and Curves primitives were added to the
RenderMan standard. In this chapter, we will look at how you can use these
to describe objects which are too fine to require a full 3D model, in a highly
efficient manner.

Particles

Particles are one of the most commonly used tools in the special effects industry,
creating smoke, fire, dust, rain, and countless other phenomena. These illusions
rely not on the appearance of the individual particles but rather the combined
image of thousands of particles or more. While it is possible to render each of
these particles as a simple object such as a sphere, the Points command is
designed to render a complete particle system as a single piece of geometry, and
in doing so greatly improves efficiency.

Because particles are designed to be used in huge numbers it makes little
sense to create them by hand in a RIB file. Using the C API it is trivial to create
any number of points. In Listing 17.1, we fill the array “position” with
1,000 coordinates generated by sine and cosine waves of different frequencies.
In the second half of the code we simply pass this to the Points command
using the “P” parameter. As we are using the C API we also need to specify
how many points there are, though in a RIB file this is not necessary. When the
program is run a RIB file is generated, which can be rendered to produce
Figure 17.1.

119

120 Essential RenderMan

Listing 17.1 The Points command.

Particles and Hair 121

et e
R el + IR SRS
K o s . o
e s " ~ 2k
5 . B
‘:“'.ll o
o4 ‘) ~
- -t
4 -
gbe
L !
.
opd .
\‘:a ':.‘I.
.. e
- --‘ .
- [| - T
o e _.n'
. . . -,
At T T RN o e
" =
W o
~N LS
1,_ r
:Iu
]] oL

FiGURE 17.1. The points command

—
Particle Size

By default, particles have a width of 1, and hence in Listing 17.1 we had to trans-
late the particles system back from the camera by 300 units to ensure that the
particles were sufficiently small. In Listing 17.2, however, we have taken control
over the size of the particles. We have created two sets of points here, and in the
first—which is colored red—we have set the size of particles using the parame-
ter “constantwidth.” This sets a uniform size for every point in the group.
Should you need to set the size of each particle individually you can do this, as
we have in the case of the second (green) set of points, using the “varying”
parameter “width,” which allows us to specifiy a size for each particle. The
resulting image is shown in Figure 17.2.

122 Essential RenderMan

Listing 17.2 Controlling the size of points.

Particles and Hair 123

FIGURE 17.2. Controling the size of points

The varying parameter “Cs” is also invaluable when used with the Points
command as it allows us to control the color of each point individually, rather than
applying a single color to every particle. We’ve done this in Listing 17.3 which
stores a random color for each point in the array “color”, and passes it to the
Points command as part of its parameter list. The result is shown in Figure 17.3
(also Plate VI).

Listing 17.3 Changing the color of points.

(Continued)

124

Essential RenderMan

FIGURE 17.3. Changing the color of points (also Plate VI)

Particles and Hair 125

If you look closely you might notice that points are not rendered as true 3D
objects but as small, flat flakes, which are oriented towards the camera. This is
one of the optimizations which allows thousands of particles to be rendered in
only a few seconds. Although the individual points are rather limited in their
appearance, the intention is that points should be visible only as a cloud, not as
individuals. Even though points are actually flat you can still scale, rotate and
translate them as if they were real 3D objects — their flatness is an optimization
which should go unnoticed. However, you must avoid making them too large on
screen or else this subterfuge will be uncovered.

Hair

Rendering hair or fur has much in common with particle techniques. Once again
the visual interest comes not from the complexity of the individual objects but
from the large number of objects that compose an image. The Curves
command takes the idea of a flat object oriented to the camera, as used for
particles and extends it to render a set of curves. A curve has a length, but it has
no depth, and minimal width.

We have created a set of curves in Listing 17.4. As was the case for points, we
first calculate the positions of the point on each curve and store them into an
array. If you wanted to create a realistic hair simulation then the complexity
would lie here, in calculating the movement of the hairs, rather than in the rendering
itself. The curves we have created are quite simple, and each contain four points.
However, as it is possible to have a different numbers of points for each curve in
a set, we also create an array nverts that we will use to tell the renderer how
many points belong to each curve.

Listing 17.4 The Curves command.

/* curves.c - create a set of curves */
#include <ri.h>
#include <math.h>

#define COUNT 1000
#define JITTER (SCALE) (((random()%1000)/500.0-1)" SCALE)

int main(int argc, char “argv[])
{

RtPoint position[COUNT"4];

RtInt nverts[COUNT] ;

RtColor red={1,0,0};

float curveWidth=0.3;

float fov=30;

int 1i;

(Continued)

126 Essential RenderMan

/*Generate Curve Postions™*/

for (i=0;i<COUNT;i++)
{
float tx=(sin(i*0.3)*i*50)/COUNT+JITTER (5) ;
float ty=(cos(i*0.3)*i*50) /COUNT+JITTER(5) ;

position[i*4+40][0]=0;
position[i*4+0][1]=0;
position[i*4+0][2]=50;
position[i*4+1][0]=0.1*tx;
position[i*4+1][1]=0.1*ty;
position[i*4+1] [2]=25;
position[i*4+2][0]=0.4*tx;
position[i*4+2][1]=0.4*ty;
position[i*4+2][2]=0;
position[i*4+3][0]=tx;
position[i*4+3][1]=ty;
position[i*4+3][2]=-25;
nverts[i]=4;
}
RiBegin (RI_NULL) ;
RiDisplay (“curves.tiff”,“file”,“rgba”,RI_NULL);
RiProjection (“perspective”,
“fov”, &fov,
RI_NULL) ;
RiWorldBegin () ;
RiTranslate (0,0,200) ;
RiColor (red) ;
RiRotate (45,1,0,0);
RiCurves (“linear” ,COUNT,
nverts,
“nonperiodic”,
“P”,position,
“constantwidth”, &curveWidth,
RI_NULL) ;
RiWorldEnd () ;
RiEnd () ;
return 0;

}

Like patches, we can choose to either connect these points with straight lines
or fit a curve through them. The first parameter to the Curves command is there-
fore either “1inear” or “cubic.” Figure 17.4 shows the result of rendering this
set of curves with both linear and cubic interpolation. We also tell the renderer the
number of curves, and number of points in each curve, as previously calculated.
It is possible to connect the end of a curve back to its start making a small loop,
but here we have specified that the curves should be nonperiodic. Finally, we pass
in the array of points which define the curves. Like points, we can specify the
width of the curve using the parameters “constantwidth” or “width.”

Particles and Hair 127

m
o

FIGURE 17.4. A set of curves: (a) linear (b) cubic

——
Summary

RIB API

Points
Curves “linear” [nvertices] “nonperiodic”

C API

RiPoints (nPoints, ..., RI_NULL);
RiCurves (“linear”, ncurves, nvertices [],
“nonperiodic”,
., RI_NULL);

Part 3
Shading

Though RenderMan supports a wide range of modeling primitives, it would be
impossible to use geometry to create the level of detail required by even the
simplest of scenes. Instead, fine surface detail is added to coarser base surfaces
through the use of shaders. You can use RenderMan shaders to influence many
stages of the rendering process, but the most common form is the surface shader.
The job of the surface shader is to decide the color of each point on a surface,
based upon its position, orientation, lighting and the observer. The renderer pro-
vides the shader with the necessary information to perform this calculation, and
then integrates the result into the final image.

In order to maximize flexibility, shaders take the form of short fragments
of computer code. While obviously being able to program helps here, a small
amount of knowledge goes a long way, as most of the hard work is already being
done by the renderer. Useful shaders can be very short, and algorithmically simple,
as even basic shaders can produce visually interesting surfaces.

Chapter 18
My First Shader

Introduction

In this chapter we will compile and view a simple shader. In doing so, you will
become familiar with the shader writing tools and processes, which we will apply
to more complex examples in later chapters.

Writing the Code

RenderMan shaders are written using a special programming language know as
SL (Shading Language). The code descrbing a shader called mySurface will
typically be found in the file “mySurface. s1.” While this naming convention
is not strictly necessary, it is a very sensible convention to adopt, and we will
assume it here.

The code for our first shader is in Listing 18.1. In SL anything between /* and
* / is a comment, so the first line of code is simply a description of the files con-
tents. The second line indicates that this is a shader of type “surface” and has
the name “first.” This is the name that it will be referred to by, in a RIB file or
animation package. The rest of the file will be considered in greater detail in the
following chapter.

Listing 18.1 A firstshader.

/* A Simple Shader Shader written in SL */
surface first()

{

0i=0s;

Ci=Cs * 0i;

}

131

132 Essential RenderMan

The shader source code is simply text, and can be entered using any text editor,
such as textedit (MacOSX), kate (Linux), or notepad (Windows). It should be
saved in a text file with the name “first.s1”. The exact layout is not impor-
tant, so you can add new lines, or spaces wherever you choose, but it is important
to lay the code out so that it is as clear and readable as possible.

Preparing the Shader for Use

In order to use the shader with a particular renderer it first needs to be trans-
formed from the text format of the shading language into a more basic format that
can be understood by the renderer—a processed known known as “compilation.”
This is done by a program (known as a compiler) which is unique to each
RenderMan renderer. You should refer to the documentation of your renderer for
the information on its compiler, but the most common examples are:

Renderer Compiler Name File Extension
PRMan shader slo

RenderDotC shaderdc .system dependant
Air shaded slb

3Delight shaderdl .sdl

Agsis agsl slx

Angel giles sl

We will use the command “shader” (the PRMan shader compiler), but you
should substitute for whatever is required by your renderer. When this program is
run a new file is created which contains a version of the shader optimised for a
particular renderer. You would therefore compile your new surface “first” for
use by PRMan using the command “shader first.sl” to create the file
“first.slo.” Each renderer uses a unique file extension for its compiled
shaders, so you can compile a shader for several renderers and keep the results in
the same folder.

If a compiled shader is not generated, this usually means there is a mistake
somewhere in your shader. This will happen, even when you are proficient at
shader writing, as the compiler insists that the shader be exactly right before it can
be used to create an image. In the event of an error the compiler will usually print
a list of problems, along with the line number of the code which caused problems.

Tackle the errors one at a time, starting with the first, as a problem on one line
will often confuse the compiler, making it think there are far more problems than
there are—fixing the first error will often solve all of them. If you cannot see a
problem on the line that the compiler is reporting an error on, check the line
before, as sometimes the compiler does not notice a mistake until slightly later
than it should.

My First Shader 133

O —
Viewing the Results

At this stage it would be possible to go into the modeling package of your choice,
and use the shader. During the process of writing a shader, however, you will prob-
ably need to do this hundreds of times. It, therefore, makes sense to streamline the
process as much as possible (and also avoid tying up a potentially valuable mod-
eling licence). A good method of doing this is to either manually or using your
modeling software create a RIB file which has the new shader attached to a sim-
ple object (a sphere or a plane), as in Listing 18.2. This can be rendered quickly
and easily from the command line to produce something like Figure 18.1.

Listing 18.2 A testscene

Display “first.tiff” “file” “rgba”
Projection “perspective” “fov” [45]
LightSource “ambientlight” 1
“intensity” [0.2]
LightSource “spotlight” 2
“from” [-1 1 0]
“to” [0 0 3]
“intensity” [3]
Translate 0 0 3
WorldBegin
Color [1 O O]
Surface “first”
Sphere 1 -1 1 360
WorldEnd

FIGURE 18.1. A first shader

134 Essential RenderMan

Starting with simple geometry allows you to understand the behavior of your
shader better than a complex model would. The development process therefore
becomes:

edit myShader.sl

shader myShader.sl
render testMyShader.rib
viewer testMyShader.tiff
rinse and repeat . . .

A typical shader development process might use a simple RIB file for the initial
development. Once the basic look has been established a more complex RIB file
can be used, perhaps containing the object for which the shader is being devel-
oped, so the appearance can be evaluated in situ. Only for final tweaking and pro-
duction testing need the shader actually be loaded into the modeling package.

Summary

The shader development process is summarized in Figure 18.2.

Shader |«
first;lJ
Go Back
A and Improve
Shader Compiler the shader
shader RIB File
first.rib
\
Compiled Renderer
Shader render
shader.slo
v
Image File View Image

first.tiff

FIGURE 18.2. Compiling shaders

Chapter 19
Lighting Models

Introduction

Having successfully written and rendered a simple shader, we are now ready to
start expanding the body of the code, to produce more interesting results. In this
chapter, we will investigate the way that the surface interacts with the lights in the
scene. You will see that some simple approximations will allow us to produce a
wide range of effects that you can use as a starting point for your own shaders.

Constant

The shader “first,” from the previous chapter, is in fact identical to one of the
standard RenderMan shaders, known as “constant.” This ignores any lights in
the scene, and simply applies a flat color to the object—the color that you specified
in the RIB file. The opacity of the object as defined in the RIB file is also included.

If we examine the code for “constant” more closely (Listing 19.1), it uses
four variables 01, Os, Cs, and Ci. O stands for opacity and C for color. Os and
Cs are the values assigned by the Color and Opacity commands in the RIB
file. These are passed to the surface shader by the renderer. It is the surface
shader’s job to take these values and calculate the color and opacity of the object

Listing 19.1 The constant shader.

surface constant ()
{

0i=0s;

Ci=0i * Cs;

135

136 Essential RenderMan

when it is observed by the camera in particular scene. The values calculated are
assigned to the variables Oi and Ci, which are then used to construct the final
image. These standard variables are known as “globals,” and are the standard
mechanism by which data flows into and out of the shader (a summary of the
global variables is on the inside back cover).

The constant shader simply takes the provided opacity (Os) and assigns it
to the output opacity (01i). The second line where the output color (C1) is calcu-
lated is slightly more complex, as the output color is the input color multiplied by
the opacity. This is known as “premultiplied” or “associated” opacity. Normally,
color values range between 0 and 1, so 1,0,0 would be bright red. However, if this
color was applied to a surface that was totally transparent, then the surface could
not carry any color at all (0,0,0). If the surface was 50% transparent, then half the
output color would come from the surface (0.5,0,0) and half would be from what-
ever was behind the surface. Multiplying the surface color by the opacity takes
this into account. The simple rule is that you should always multiply the output
color by the opacity.

Matte

In order to make a surface appear three-dimensional we need a surface shader that
will take into account the position of lights and the orientation of the surface to
these lights.

Surface Orientation

The orientation of a surface at a point is defined by the surface normal, which is
stored in the global variable N. This variable contains a vector which points away
from the surface, and has a different value at every point on the surface. We are
also going to need to consider the direction from which the surface is being
viewed, and this is in the variable I. Both N and T are illustrated in Figure 19.1.

Lighting Models 137

FIGURE 19.1. N and I

The variable N also tells us which side of the surface is the front and which is
the back, but we probably do not care—we usually want to shade both sides of a
surface in the same way. We therefore need to calculate the “face forward surface
normal.” If we are looking at the back of the surface, then N will be pointing away
from us (in the same direction as I), so we must reverse the direction of N, and
store it in a new variable “Nf”. If N is already pointing towards us we can just
copy it to N£. In either case Nf will always point towards us. All of this can sim-
ply be achieved using the function faceforwards ()—some code built into
the renderer which performs the calulation we require, and returns the correct
value of Nf:

normal Nf=faceforwards (N, I);

Nf is declared as a variable of type “normal,” since although it is a vector we
are going to use it to represent the orientation of the surface. Normals behave
slightly differently to ordinary vectors when certain operations are performed on
them, and the compiler may also use this information to detect potential errors in
your code. Old implementations of RenderMan simply used the type “point”
for all vectors, and this is still reflected in some documentation but in modern
code “point” should only be used to represent a position in space.

Depending on your implementation, you may have to declare all variables at
the beginning of your code (as in C) or you may be able to declare variables
immediately before you need them (as in C++). While the former style is more
portable, inline declarations can make short examples more readable. Should
your compiler have problems, simply separate the declaration and move it to the
top of the shader code:

normal Nf;

Nf=faceforwards (N, I);

138 Essential RenderMan

The variable Nf is given the value of N, flipped (if necessary) so that it is facing
toward the observer. However, the length of Nf has no meaning, as we are using
it purely to represent the surface’s orientation. Therefore, when we use Nf in a
shader (Listing 19.2) we also need to scale it so that has a unit length (i.e. it is one
unit long). Using normals of nonunit length can generate unpredictable results, so
it is important to remember to do this. To confuse matters, scaling a vector so that
it has unit length is called normalization, and is implemented in SL by a function
called normalize (). Though we often have to normalize normals, the two are
completely unrelated and unfortunately just happen to share similar names.

Listing 19.2 A diffuse shader.

surface second ()

{
normal Nf=faceforward (normalize(N),I);
0i1i=0s;
Ci=Cs * diffuse(Nf) * 0Oi;

Collecting Light

In the shader “second” the predefined function diffuse () is included in the
calculation of Ci .Diffuse() does all the work of collecting light from sources
in the scene and calculating how much is reflected by the surface. It models a
rough surface, which scatters light in all directions equally (Figure 19.2). To
calculate this, it need to know the surface normal (Nf) but not the observer’s
position (I), as the value calculated is independent of where the camera is.

Diffuse scattering

FIGURE 19.2. Diffuse scattering

Lighting Models 139

The value returned by diffuse() is not simply the brightness of the lights
but also the color. However, one of the benefits of SL over C and other pro-
gramming languages is that it knows about colors and other variable types
used in rendering. It is, therefore, perfectly reasonable to add together or mul-
tiply colors, and the results will be correct. The “second” shader is very sim-
ilar to the standard shader “matte” which is defined in Listing 19.3. In
addition to diffuse lighting, the contribution from any ambient light is included
by the call to ambient () to ensure that the dark sides of objects are not
completely black. The collected light is multiplied by the surface color and
by Oi then assigned to the output Ci to produce a surface which looks like
Figure 19.3 (see also Plate II, Figure 12.2).

Listing 19.3 The matte shader.

surface matte (
float Ka=1;
float Kd=1;
)

normal Nf=faceforward (normalize(N),I);

0i=0s;
Ci=01 * Cs * (Ka * ambient() + Kd * diffuse(Nf));

FIGURE 19.3. The matte shader (see also Plate II, Figure 12.2)

140 Essential RenderMan

Matte also has two parameters “Ka” and “Kd”, which control the contribu-
tions from diffuse and ambient lighting. These can be assigned by parameter list
in the RIB file (and typically in the modeler), allowing the shader’s appearance to
be modified by an animator without having to modify the code. To create such a
parameter you must not only declare the parameters but also provide default
value. If no explict value is provided when the shader is applied to an object, then
these values will be used.

Metal

Mat te models a rough surface which scatters light, but real surfaces often reflect
light in a more coherent fashion. When you view a metallic surface from the cor-
rect angle light will be reflected directly towards you creating a bright “specular”
highlight. Depending on the texture of the surface this highlight may be bright
and sharply defined, or more evenly spread over a large area. Such reflections are
illustrated in Figure 19.4.

Specular scattering

FIGURE 19.4. Specular reflection

This form of reflection is modeled by the function specular (). In order to
calculate the amount of light being reflected in a particular direction, we will need
to tell it the surface normal, the roughness of the surface, and the direction the sur-
face is being viewed from (for which we would like to calculate the reflection).

The direction towards the viewer is typically stored in a variable called V and
while unlike Ci, Cs, N and other globals, the use of the name V is purely a con-
vention. The adoption of standard names for commonly used information makes
shaders easier to read. Nf is also a commonly adopted name to mean the face for-
wards surface normal. V is the direction back towards the observer, so we simply
add the line:

vector V=normalize (-I);

as I is the vector from the observer to the point on the surface. V is of type vector
as it is a free vector with no special properties other than indicating a direction.

In Listing 19.4, in place of diffuse(), the function specular() has been
called, resulting in a highlight which is dependent on the observer’s position as
well as the position of the light.

Lighting Models 141

Listing 19.4 A specular shader.

surface third ()

{
normal Nf=faceforward (normalize(N),I);
vector V=-normalize (I);

0i=0s;
Ci=0i * Cs * specular(Nf,v,0.1);

This shader models the appearance of a rough metal surface, and is closely
related to the standard RenderMan shader “me tal” which is listed in Listing 19.5.
Once again the standard version adds an ambient contribution, along with controls
to let an end user modify the surface. The resulting image is shown in Figure 19.5
(see also Plate II, Figure 12.3).

Listing 19.5 The metal shader.

surface metal (
float Ka=1;
float Ks=1;
float roughness=.1;)

normal Nf=faceforward (normalize(N),I);
vector V=-normalize (I);

0i=0s;
Ci=0i * Cs *
(Ka*ambient () +Ks*specular (Nf,V, roughness)) ;

FIGURE 19.5. The metal shader (see also Plate II, Figure 12.3)

142 Essential RenderMan

—
Plastic

In practice, most surfaces combine some degree of both a diffuse and a specular
highlight as in Figure 19.6 (see also Plate II, Figure 12.5). This was produced
using the standard shader “plastic” shown in Listing 19.6, which combines
the functionality of both matte and metal.

Listing 19.6 The plastic shader.

surface plastic (
float Ka=1;
float Kd=.5;
float Ks=.5;
float roughness=.1;
color specularcolor=1;)

normal Nf=faceforward (normalize (N),I);
vector V=-normalize (I);

0i=0s;

Ci=0i * (Cs * (Ka*ambient ()+Kd*diffuse (Nf))
+specularcolor * Ks*specular (Nf,V, roughness)
)

FIGURE 19.6. The plastic shader (see also Plate II, Figure 12.5)

In the plastic shader the RIB color Cs is used to control the color of the diffuse
lighting, while the color of the specular highlight is controlled by the parameter
specularcolor. This models plastic relatively well for reasons discussed in
Chapter 12. By adjusting the weighting parameters (Ka, Kd, and Ks) and chang-
ing specularcolor, however, it is possible to reproduce any of the effects of
matte or metal. For this reason plastic forms a good starting point from which
more complex shaders can be developed.

Lighting Models

Summary

Cs
The surface color declared in the RIB file.

Os
The opacity color declared in the RIB file.

Ci
The final surface color calculated by the shader.

0i
The final surface opacity calculated by the shader.

N
The surface normal.

Nf
The face forward surface normal.

I
A vector from the camera to the surface.

\Y
The direction of the camera from the surface.

faceforward (N, I)

Calculates a vector parallel to N, but facing forwards when viewed along /.

normalize (N)
Calculates a vector of unit length with the same orientation as N.

diffuse (N)
Calculates diffuse lighting for the surface.

specular (N,V, roughness)
Calculates specular lighting for the surface.

143

Essential RenderMan

144
—
Related Functions

phong(N,Vsize)

Though it is little used, SL also supports the Phong shading model, which
behaves much like specular. The choice is an aesthetic one, but specu-
lar() is usually preferred.

Chapter 20
Color Ramps

Introduction

Having established a basic technique for lighting our object we can now move on
to the task of creating variations across the surface. In this chapter we introduce
the most basic of such variations—a ramp of color changing smoothly from one
side of the object to the other.

A Standard Shader

Though the whole process of calculating the color of a surface point is referred to
as shading, and in RenderMan any custom code written in SL is known as a
shader, the term shading more strictly refers to the calculation of the interaction
of light with the surface. Though a little clichéd the standard plastic model pro-
vides reasonable flexibility when used intelligently and (at least in the short-term)
we can consider the actual shading part of our shader done. In fact what most
shaders are concerned with is the variation of properties such as color and rough-
ness, across the surface—variation which we will refer to as texturing. It is these
variations which create visual interest, and make rendered images spring to life
rather than appearing dull and artificial.

If you consider the plastic model as a black box, then each of the variables
it uses (Ka, Kd, Ks, Cs, Os, specularcolor, Nf, V, and roughness) is an
input while the variables Ci and Oi are its outputs. In the standard shaders most
of the input variables are constant across the whole surface but we can manipu-
late any of them to create a more realistic image. At the very least you would
expect a surface to have some variation in color. Based on this premise, we can
create a standard shader that we can use as a template for further shader devel-
opment. Such a starting point is shown in Listing 20.1.

145

146 Essential RenderMan

Listing 20.1 A standard shader template.

surface standard (
float Ka=1;
float Kd=.5;
float Ks=.5;
float roughness=.1;
color specularcolor=1;)

/*Initialization”/

normal Nf=faceforward (normalize (N),I);
vector V=-normalize (I);

color Ct;

/*Texturing®/

Ct=Cs;

/*Shading*/

0i=0s;

Ci=0i * (Ct * (Ka*ambient ()+Kd*diffuse (Nf))+
specularcolor * Ks*specular (Nf,V, roughness)) ;

This is functionally identical to plastic, but it has now been broken into three
sections: initialization, where V and Nf are set up; texturing, where we calculate
a new variable Ct—the color of the textured surface; and shading, where Ct is
used in the plastic shading model. In our standard shader the textured surface
color Ct is simply assigned the value of Cs, but it is this texturing part of the
shader we will be developing further.

We generally will not specify the whole shader in future, but simply the
texturing section, as the shading and setup sections would not be changing in
most of our examples. When a code fragment results in the calculation of Ct, it
will be assumed that the code should be placed into the standard shader.

A Simple Ramp

Perhaps the simplest texture we could have is a ramp, where the texture changes
color smoothly across the surface. To do this you need to know where on the
surface you currently are, and this information is provided by two variables, u and
v, which tell us how far across and how far up the surface we are. Both range from
0 at the bottom left to 1 at the top right. This works for most of the RenderMan
geometry types because they are based on patches—that is, they have four corners.

Although a sphere may not appear to have corners, you can unwrap the surface
like a world map from a globe. Each point in the world can uniquely be identified

Color Ramps 147

by a set of two-dimensional coordinates, u being longitude and v being latitude.
Using the same approach we can take a rectangular image and wrap it onto a
sphere to in a simple, unambiguous fashion. This technique also works for all the
other quadrics and patches (including NURBS).

Unfortunately such a neat mapping from u/v to a position on the object is not
possible in the case of polygons, and this is one of the reasons their use is dis-
couraged. Polygons do have u/v coordinates but they generally do not work very
well. However, as the techniques required to get round this problem are a little
more complex, we will defer the subject for a later section.

You could use the variables u and v to calculate a value for Ct, but there is a
slightly better way: RenderMan provides a second set of two-dimensional coor-
dinates s and t, which by default are identical to u and v. The difference is that
s and t can be modified by the modeler, if the end user wishes to change the posi-
tion of the texture. While u and v always refer to the underlying geometry, s and
t refer to how the user wishes the surface to be textured. Generally you should
use s and t when evaluating textures, and if the user does not change them then
we are back to uv anyway. As s and t provide us with our position in texture
space, a ramp shader can be as simple as:

Ct = s;

which creates a ramp from black on the left to white on the right (Figure 20.1).

FIGURE 20.1. A horizontal ramp (s)

148 Essential RenderMan

Alternatively:
ct = t;

creates the vertical ramp shown in Figure 20.2. For clarity, these have been
rendered on a simple tile which makes the texture coordinates obvious.

FIGURE 20.2. A vertical ramp ()

If you are from a programming background you might notice that something
strange is going on. S is a scaler, that is, it contains a single value, which in this case
ranges from O at the left, to 1 on the right, yet Ct is a color which typically requires
three components to specify the red, green and blue intensities. Most programming
languages would consider assigning a scaler to an array to be an error of some sort,
but SL is specifically designed to handle this sort of situation. SL knows that Ct is
a color, but it also knows that a scaler value such as s can represent a grayscale
value—an intensity. Assigning s to Ct therefore converts O to black, 1 to white and
similarly for shades of gray in between, producing the desired ramp.

The ramps blend from black on the left (bottom) to white on the right (top). To
make the ramp to go the other way (from right to left) you could replace s with
1-s. Where s=0 then 1-s=1, and when s=1 then 1-s=0, so the locations of
black and white are reversed, as in Figure 20.3.

Color Ramps 149

FIGURE 20.3. Reversing the ramp (1—s)

O —
A Colored Ramp

If you want to convert the grayscale ramp into a colored ramp you need to
multiply the intensity by a color, and since the user has provided us with Cs, it is
probably best to use that (though we are under no obligation). To produce a
horizontal ramp we simply assign

Ct=s*Cs;
A similar vertical ramp could be generated using

Ct=t*Cs;
Once again the shading language knows intensities can be combined with colors
to produce colors of varying brightness.

If we could create a left-right ramp of one color, and a right-left ramp of a
second color then adding them together would produce a blend between the two

150 Essential RenderMan

colors—the original colors are found at each edge and as one fades to black
the other would fade in.
As this requires two colors we will specify the second with an expression:

color “rgb” (0,1,0);

This creates bright green. Note that in addition to providing the three component
values of the color, we have specified that these should be treated as an rgb value.
Other color spaces can be used to good effect, as in Plate IV (the HSV color
space). The code in Listing 20.2 produces this image by simply using s to specify
the hue, and t to specify the saturation.

Listing 20.2 The HSV color space.

Ct=color “hsv” (s,t,1);

Having chosen the two colors to use we simply create a left-right ramp of
green, a right-left ramp of the Cs, and add them together, as in Listing 20.3.

Listing 20.3 A color blend.

color green;
green=color “rgb” (0,1,0);
Ct=(l-s) *Cs+s*green;

However, this mixing operation is so common that a standard function is provided
to do it. Mix () takes two colors and blends them together based upon the third
parameter, as demonstrated in Listing 20.4. The results of the two shaders (Plate
IV, Blending two colors) in blending two colors are identical, though the code of
Listing 20.4 is slightly clearer.

Listing 20.4 Using mix.

color green;
green=color “rgb” (0,1,0);
Ct=mix (Cs, green,s) ;

Generalizing the Shader

Having arrived at an effect that you are happy with, the time comes to release the
shader into general use. However, before doing so, we should consider if we
could make it a little more flexible. During development it made perfect sense to

Color Ramps 151

produce a green ramp from left to right, but once in use it would be frustrating
to have to keep modifying the shader or maintain multiple copies each almost
identical if a slightly different effect was needed.

The most obvious limitation of the shader is that the user may want to choose
their own color. We should, therefore, probably replace the variable green with
a parameter, allowing the blend color to be easily changed. Typically you
should examine your shader for any constants that may need to be changed, and
make these into parameters. However, you should also be cautious of making
the shader too flexible—it is far simpler to have a number of shaders each cre-
ating one type of surface, than to have an incredibly complex shader with hun-
dreds of parameters.

We might also choose to allow the user to select between a horizontal or verti-
cal ramp. The completed shader including the standard template is shown in
Listing 20.5.

Listing 20.5 A general ramp.

surface ramp (
color otherColor = color “rgb” (0,1,0);
float orientation = 0;
float Ka=1;
float Kd=.5;
float Ks=.5;
float roughness=.1;
color specularcolor=1;)

normal Nf=faceforward (normalize(N),I);
vector V=-normalize(I);
color Ct;

if (orientation=0)

Ct=mix (Cs,otherColor,s) ;
else

Ct=mix (Cs,otherColor, t) ;

0i=0s;
Ci=0i * (Ct * (Ka*ambient()+Kd*diffuse (Nf))+
specularcolor * Ks'specular (Nf,V,roughness)) ;

Remember that though the standard shader template only varies the color, you
can use ramps to modify any part of the shading code. For example, you could
create a surface which is more opaque at one side by adding a variable Ot,
assigning a ramp to it, and using it in place of Os in the lighting model.

152 Essential RenderMan

Summary

u, v
Surface coordinates, which define a position upon the surface being shaded.

s, t
Texture coordinates, which define how a surface has been texture mapped in the
modelling package. By default these are the same as u, v.

color "rgb" (r,g,b);

color "hsv" (h,s,vVv);
These specify colors within the code. Colors are usually specified by three parameters,
but these can have different interpretations depending on the colorspace used.
RGB, and HSV are the most common spaces, but others may also be defined
depending upon your renderer.

mix (coll, col2, blendval);
Mix blends between two colors. If blendval is O then the result is coll. If
blendval is 1 then col?2 is returned.

Chapter 21

Simple Patterns

Introduction

Having learnt that s and t can be used to specify points on the surface of objects,
we will now look at how these coordinates can be used to draw patterns upon the
surface. While these shapes will be quite simple, we can combine them together
with more complex results.

Bands

After ramps, the next simplest pattern you could draw on a surface would be to
divide it into two regions based on one of the texture coordinates—for example,
to make the top red, and the bottom green as in Plate IV. To do this we can use
the variable t to decide if we are in the top or bottom half of the object, and
assign colors to Ct accordingly. The code to do this is in Listing 21.1.

Listing 21.1 Creating bands.

color red=color “rgb” (1,0,0);
color green=color “rgb” (0,1,0);
if (t<0.5)

Ct=green
else

Ct=red;

While this works, it creates a very sharp transition—a point is either completely
red or completely green. In a single still frame this is not a problem, but in an ani-
mation pixels would “pop” from one side to the other. This is just one instance of a
more general problem known is aliasing, which will be discussed in greater depth
in Chapter 27. In general i f statements should be used with caution in shaders.

153

154 Essential RenderMan

To avoid such a sharp edge, the transition from top to bottom needs to be
smoothed so that points on the border are somewhere between red and green. This
is done using the function smoothstep (), which is plotted in Figure 21.1.
Smoothstep takes two parameters that represent the start and the end of a transi-
tion, while a third parameter represents the position we are testing.

a b X

FIGURE 21.1. Smoothstep (a, b, x).

A revised shader based on smoothstep () is shown in Listing 21.2. If t is
less than 0.4 then the result of smoothstep () will be 0, while inTop will be
assigned 1 if t is greater than 0.6. Between these values the value returned by
smoothstep () will change gradually, avoiding any sharp transitions such as
those produced by an if statement which either selects red or green. The value
inTop is then used to mix between red and green, to produce a soft edge, which
avoids popping, as in Plate I'V.

Listing 21.2 A softedge.

float inTop;
color red=color “rgb” (1,0,0);
color green=color “rgb” (0,1,0);

inTop=smoothstep(0.4,0.6,t) ;
Ct=mix (green,red, inTop) ;

We can consider this kind of code as a sort of fuzzy logic. As in regular logic
1 means true—the point is in the top region, while 0 means false—the point is
not in the top region. However, some points are somewhere in between, so the
variable inTop can also hold values somewhere between true and false.

Simple Patterns 155

Lines

To produce a line vertically down the centre of the object you would first need to
find the distance of the point being shaded from the centre:

float dist=abs(s-0.5).

At the centre s is 0.5 so by subtracting 0.5 from s we can find out how far we
are from there. We use the function abs () to throw away the sign of the result,
as we do not care which side of the line the point is on.

If we decide the line is to be 0.2 wide then points a distance of less than 0.1 on
either side of the centre will be inside the line. Once again you should use
smoothstep () to soften the lines edge, as in Listing 21.3. We have used a vari-
able fuzz to specify the softness of the edge, rather than adjusting the bound-
aries explicitly. However, smoothstep () will return 1 if the distance is greater
than 0.1 +fuzz, so we use 1—smoothstep () making the result 1 (true)
inside the line, and zero (false) outside the line. The variable inLine is finally
used to mix between red and green to produce the green line on a red background
seen in Plate V.

Listing 21.3 A vertical line.

color red=color “rgb” (1,0,0);
color green=color “rgb” (0,1,0);
float fuzz=0.025;

float dist=abs(s-0.5);
float inLine=1-smoothstep(0.1-fuzz,0.1+fuzz,dist);

Ct=mix (red, green, inLine) ;

We could combine this line with the previous top/bottom split example to
produce a blue line on a red and green background, seen in Plate IV, by mixing the
blue line over the old background (Listing 21.4). We first set Ct to be green, and
then layer red over it if the point is “inTop.” The result is stored in Ct and carried
forward to the next calculation which mixes between this color and blue depending
on to the extent that the point is “inLine.” This kind of layering allows patterns
of increasing complexity to be built up gradually from simple elements.

156 Essential RenderMan

Listing 21.4 Layering two effects.

float fuzz=0.025;

float inTop;

float inLine;

float dist;

Ct=green;

inTop=smoothstep (0.5-fuzz,0.5+fuzz, t) ;
Ct=mix (Ct,red,inTop) ;

dist=abs (s—0.5) ;
inLine=1-smoothstep (0.1-fuzz,0.1+fuzz,dist);
Ct=mix (Ct,blue,inLine) ;

Circles

You can use the same approach to create a disk of color (see Plate IV). We need to
find the distance of the point being shaded from the center of the disk, and then
decide if that point is inside or outside the shape. If we center the disk at 0.5,0.5
then using Pythagoras, the distance from the centre to the current point is:

float dist=sqrt((s-0.5)*(s-0.5)+(t-0.5)*(t-0.5));

We can simply drop this into our previous code, testing this distance to see if we
are inside the disk, and then using the result to layer a new color over the existing
value of Ct, as in Listing 21.5. For increased flexibility we have set the
background color to Cs — as specified by the modeler.

Listing 21.5 Adisk.

color blue=color “rgb” (0,0,1);
float fuzz=0.025;

float dist;

float inDisk;

Ct=Cs;

dist=sqrt((s—0.5)*(s—-0.5)+(t-0.5)*(t-0.5)) ;
inDisk=1-smoothstep (0.3—fuzz,0.3+fuzz,dist) ;
Ct=mix (Ct,blue, inDisk) ;

As an alternative to calculating the distance ourselves we could use the func-
tion distance (). This calculates the distance between two points in three-
dimensional space. The only complication is that we need to turn our
two-dimensional texture coordinates into three dimensional-points before we can
use them with distance (). This is done as shown in Listing 21.6. Though it may

Simple Patterns 157

Listing 21.6 Using the distance () function.

float dist;

float inDisk;

point centre=point (0.5,0.5,0);
point here=point (s,t,0);

Ct=Cs;

dist=distance (centre, here) ;
inDisk=1-smoothstep (0.3—-fuzz,0.3+fuzz,dist) ;
Ct=mix (Ct,blue, inDisk) ;

appear as if we are calling a function called “point,” infact we are just assembling
the three coordinates into a point, rather like we do when specifying a color.

The results from either approach are identical, though the second is probably
slightly clearer.

More Lines

The lines we have drawn so far have been limited to being vertical or horizontal. To
define arbitrary lines as in Plate IV you need to specify a start and an end point.
The maths to calculate the distance of a point from a line is slightly more complex,
but fortunately it is handled for us by the built-in function ptlined (). Given a
start point, an end point, and the point to consider, it will return the required distance
which we can then use in the standard fashion (Listing 21.7).

Listing 21.7 Using the ptlined function.

float fuzz=0.025;

float dist;

float inLine;

point start=point (0.1,0.3,0);
point end=point (0.7,0.7,0);
point here=point(s,t,0);

Cc=Csg

dist=ptlined(start,end, here) ;
inLine=1-smoothstep(0.1—fuzz,0.1+fuzz,dist);
Ct=mix (Ct,blue, inLine) ;

158 Essential RenderMan

Boolean Operations

In addition to layering patterns you can combine them, to find parts of the
object which are inside or outside one pattern, and also inside or outside
another. Given two shapes A and B, for which you have calculated the variables:
inA and inB then

1-inA The point is outside A

inA*inB The point is inside A and B

inA* (1-1inB) The point is inside A but outside B
(1-inA) * (1-1inB) The point is outside A and B

1-(1-inA) * (1-1inB) The point is inside A or it is inside B

Summary

float smoothstep(float start, float end,
float here)
If here is less than start then the result is 0. If it’s more than end then the
result is 1. If here lies somewhere between then the value returned varies
smoothly.

float mix(color cl, color c2, float blend)
Mixes between c1 and c2 depending on the value of blend.

float distance (point pl, point pl)
Calculates the distance between the points p1 and p2 in 3D space.

float ptlined(point start, point end, point here);
Calculates the distance from the point here to the line from start to end.

Chapter 22
Tiling and Repeating Patterns

Introduction

In this chapter, we will see how the simple patterns we created in the earlier
chapter can be duplicated across a surface to create a more complex pattern. We
will use pseudorandom numbers to modify the pattern upon each repetition to add
visual interest to the texture.

Creating Tiles

As all our patterns are based on the texture coordinates (s, t) we can manipulate
these prior to the generation of the basic motif to produce a more complex overall
effect. If the texture coordinates repeat, so will the pattern. The standard texture
coordinates s and t cannot be changed, so we will use two new variables, ss and
tt to store these modified coordinates.

To duplicate a pattern horizontally five times, we simply multiply s by five (so
it ranges from zero to five), then throw away the whole number part. This creates
a new texture coordinate that goes from zero to one five times rather than once
(Figure 22.1). We remove the integer part of a number using the mod () function
which divides the first number by the second and returns the remainder. For exam-
ple mod (3.7,1) divides 3.7 by 1 which goes three times with 0.7 left over.

mod (5*S, 1)

0 0.2 0.4 0.6 0.8 1.0

FIGURE 22.1. ss=mod (s*5,1)

159

160 Essential RenderMan

The modified texture coordinates are stored in ss (and tt) and then simply used
to replace s and t throughout the rest of the texture. In Listing 22.1 we have used
ss and tt in place of s and t in the disk texture from the earlier chapter. The
result shown in Figure 22.2 (also Plate VII), is a repeating pattern over the surface.

Listing 22.1 A repeating pattern.

float fuzz=0.025;

float dist;

float inDisk;

float ss=mod(s*5,1) ;

float tt=mod(t*5,1);

point centre=point (0.5,0.5,0);
point here=point (ss,tt,0);

Ct=Cs;

dist=distance (centre, here) ;
inDisk=1-smoothstep (0.3—-fuzz,0.3+fuzz,dist) ;
Ct=mix (Ct,blue, inDisk) ;

FIGURE 22.2. A repeating pattern (also Plate VII)

Tiling and Repeating Patterns 161

Identifying Tiles

To make this pattern more interesting we probably want to modify the basic motif so
that it is slightly different in each cell. To do this you need to know which cell we are
in as well as the position in the cell. Where we used the mod () function to obtain
the fractional part of a number we can use £1oor () to obtain the integer part, as in
Listing 22.2 and Figure 22.3. Here we have multiplied s by five, and then taken the
integer part to obtain five distinct regions. We can then use the variable which-
stripe to modify the surface. However, as this is constant over each region it will
create stripes within the texture. In this case we have used mod (whichStripe, 2)
which divides whichStripe by 2, leaving a remainder of either O or 1. As a result
odd stripes are colored white while even stripes are black.

Listing 22.2 Creating stripes.

float repeatCount=5;
float whichStripe=floor (s*repeatCount) ;
Ct=mod (whichStripe, 2) ;

FIGURE 22.3. Creating stripes

162 Essential RenderMan

By applying this idea to both the s and t directions you can create a set of
tiles where each square is modified depending upon its position on the surface.
We have done this in Listing 22.3. By simply adding together the stile and
ttile values we create the checkerboard seen in Figure 22.4. Where the sum is
odd we generate a white square, while an even sum results in a black square.

Listing 22.3 Creating tiles.

float repeatCount=5;

float sTile=floor (s*repeatCount) ;
float tTile=floor (t*repeatCount) ;
Ct=mod (sTile+tTile,2);

FIGURE 22.4. Creating tiles

Though this does works it has the kind of sharp edges that you should use
smoothstep () to avoid and will look very bad when viewed from too far a
way. We will construct a better checkerboard in Chapter 27, when we look at the
problem of aliasing in greater detail.

Tiling and Repeating Patterns 163

CellNoise

Having established which tile we are shading, the next step is to generate a
random value for that cell. We do not want the result to be truly random, however.
In fact, we want it to be repeatable between renders and consistent over the entire
tile. This is the purpose of the cellnoise () function. This takes a number,
throws away the fractional part to obtain the tile number and then returns a
pseudo random number based upon that value. The important thing about this
operation is that it will consistently return the same value for the whole cell.
Listing 22.4 uses cellnoise () to generate the random colored stripes seen in
Figure 22.5 (also Plate VII).

Listing 22.4 Random colored stripes.

float repeatCount=5;
float ss=s*repeatCount;
Ct=color cellnoise(ss);

FIGURE 22.5. Random colored stripes (also Plate VII)

164 Essential RenderMan

If you wanted to allocate colors in a grid, to create a randomly colored set of
tiles like Figure 22.6 (also Plate VII), then we could pass values based on both s
and t coordinates to cellnoise (). This is demonstrated in Listing 22.5.

Listing 22.5 Random colored tiles.

float repeatCount=5;

float ss=s*repeatCount;
float tt=t*repeatCount;
Ct=color cellnoise(ss,tt);

FIGURE 22.6. Random colored tiles (also Plate VII)

Like many functions in SL cellnoise() can take a varying number of
parameters (one float, two floats, one point, or a point and a float). RenderMan
will automatically use the right version. Even more flexibly cellnoise ()
can generate either a single number (between O and 1), a color or a vector of
some kind. While RenderMan may be able to guess what kind of value it is
expected to return, there is a good chance it may guess incorrectly, so you
should always give RenderMan a hint by prefixing cellnoise () with the
required type.

In Listing 22.6 we use cellnoise () to generate both a random color and a
random radius for a tiled set of disk. The radius of each disk is generated by a

Tiling and Repeating Patterns 165

float cellnoise () function. As this normally returns a value of between
0 and 1 we have scaled it by 0.4 to ensure the disk fits within the cell. The color
of the disk uses color cellnoise () as we’ve done previously. The result
(Figure 22.7, also Plate VII) is a texture that never repeats, and could easily be
used on a large number of objects, and yet make each object appear different.

Listing 22.6 Random disks.

float repeatCount=5;
float ss=mod(repeatCount*s,1);
float tt=mod(repeatCount*t,1);

point centre=point (0.5,0.5,0);
point here=point (ss,tt,0);
float dist=distance (centre, here);

float radius=float cellnoise (repeatCount*s,
repeatCount*t) *0.4;
color myColor=color cellnoise (repeatCount*s,
repeatCount*t) ;
float inDisk=1-smoothstep (radius-fuzz,radius+fuzz,dist) ;

Ct=mix (Cs,myColor, inDisk) ;

FIGURE 22.7. Random disks (also Plate VII)

166 Essential RenderMan

Of course there is no reason why every layer of your texture should be tiled the
same way. ss and tt could be generated several times in a single shader using
different values of repeatCount.

—
Other Modifications to ss and tt

Though tiling is very common in shaders it is certainly not the only way you can
modify the texture coordinates. ss and tt can be generated in any fashion to scale,
rotate or distort the basic pattern. For example, in Listing 22.7 we have added a sine
wave to the s coordinate, before using the result in texture that would normally pro-
duce a vertical line. By using the deformed texture coordinates we get the wavy line
in Figure 22.8 (also Plate VII) which is visually far more interesting.

Listing 22.7 Deforming the texture coordinates.

float ss=s+sin(t*2*PI)* 0.4;

float dist=abs(ss—0.5);

float inLine=1-smoothstep(0.1—-fuzz,0.1+fuzz,dist);
Ct=mix (Cs,green, inlLine) ;

FIGURE 22.8. Deforming the texture coordinates (also Plate VII)

Tiling and Repeating Patterns 167

Summary

ss=mod (s*numberOfTiles, 1) ;

whichTileS=floor (s*numberOfTiles) ;
mod and floor can be used to find the fractional and whole part of a number.
By scaling s and t these divide the surface into tiles.

x=float cellnoise(s);

x=float cellnoise (s, t);

Ct=color cellnoise(s);

Ct=color cellnoise(s,t);
Cellnoise calculates a pseudo random value (usually either a single number or
a color). Its parameters are rounded down to the nearest whole number, and then
used in the calculation, so that areas of the surface will produce the same result.

Chapter 23

Projections and Coordinate Spaces

Introduction

In this chapter, we will see how you can use the position of points in 3D space to
texture surfaces. This allows you to create objects that appear to be carved from
blocks, and to texture objects for which texture coordinates are inadequate.

3D Coordinates

While s and t are simple and convenient, it is not always possible or appropriate
to use them. Patches have well-defined surface coordinates, but other forms of
geometry such as polygons, subdivision surfaces and blobby objects cannot be
mapped so easily. Even when patches are being used it can be difficult to create
seamless textures when an object is constructed from more than one patch. In
these cases we need to find other ways of identifying where we are in the texture.

Regardless of the type of surface, you can always identify each point to be
shaded by its position in 3D space. This is stored in the global variable P. It is
therefore always possible to base the surface color calculation upon this value.
You could, for example, simply take the x and y positions, and use those to cal-
culate texturing as in Listing 23.1 and Figure 23.1 (also Plate VIII). This is an
orthographic projection, as the texture is projected along the z-axis. The compo-
nents of a point (or vector) are extracted using the functions xcomp (), ycomp (),
and zcomp (). In this case we have used the new texture coordinates, ss and tt,
as parameters to cellnoise (), which allows us to see how the texture wraps
around the object. However, you could use these coordinates as the basis for any
of the effects so far explored.

169

170 Essential RenderMan

Listing 23.1 Orthographic projection.

float repeatCount=5;

float ss=xcomp (P)*repeatCount;
float tt=ycomp (P)* repeatCount;
Ct=color cellnoise(ss, tt);

FIGURE 23.1. Orthographic projection (also Plate VIII)

O —
Coordinate Systems

Though P specifies a point in 3D space it is undefined which space it is in.
Without knowing the location of the origin, and orientation of the axes, we cannot
assign any useful meaning to P. If we were shading a sphere we might reasonably
like to consider P as being relative to the centre of the sphere. However, transfor-
mations are applied to each object to position it relative to the rest of the objects
in the world. The world itself is defined relative to the camera’s position. P might
define the point we are shading relative to the object it is part of, relative to
the world, relative to the camera or relative to some totally different frame of
reference.

In fact P is defined as being in “current” space—a coordinate system
selected by the renderer that is undefined by the RenderMan standard. Different
renderers may choose whichever space is easiest for them to perform their calcu-
lations in. Figure 23.1 was created in a renderer in which “current” space is
equivalent to “camera”—a space with the origin at the camera, looking down

Projections and Coordinate Spaces 171

the z-axis, but given that “current” space is renderer dependent it is clearly
foolish to rely on it when applying textures. A different renderer might produce a
very different image. Rather than relying on the renderer’s choice of coordinate
system, you should always transform the point P into a specific frame of reference.
In Listing 23.2 we have created a similar shader to the one used previously, but
this time specified that the calculations should be done relative to the position of
the object. This is done by transforming the position of P into “object” space,
and assigning it to the new variable PP. As PP is in a well-defined coordinate
system it can be used for the rest of the calculation with reliable results. Again we
have used a convention of PP being some modified version of the variable P.

Listing 23.2 Object space.

point PP=transform(“object”,P) ;
float repeatCount=5;

float ss=xcomp (PP) * repeatCount;
float tt=ycomp (PP)* repeatCount;
Ct=color cellnoise(ss, tt);

When this new shader is applied to the scene we previously shaded in “current”
space we get the image in Figure 23.2 (also Plate VIII). The spheres are shaded
relative to the coordinate system in which they were created, rather than the
position in which they occupy relative to the camera. You can now see that
the sphere on the right is in fact rotated, as the squares of color run through it
from top to bottom rather than front to back.

FIGURE 23.2. Object space (also Plate VIII)

172 Essential RenderMan

If we use “object” space to define the coordinates in a shader, then the
texture will move as the object does. As an alternative we could use “world”—
the coordinate space that was in place when Wor1dBegin was called in the RIB
file. In this case the object would swim through the texture. Between these two
spaces is “shader” space. This is the coodinates sytem in which the shader itself
was defined, which we have used in Listing 23.3.

Listing 23.3 Shader space.

point PP=transform(“shader”,P) ;
float repeatCount=5;

float ss=xcomp (PP) * repeatCount;
float tt=ycomp (PP) * repeatCount;
Ct=color cellnoise(ss, tt);

By applying a shader to several objects they will share their shader coordinate
system, as in Figure 23.3 (also Plate VIII). Here the shader has been created in a
rotated coordinate system, and hence the texture is rotated. Because the objects
have been textured in a single space the texture flows smoothly from one object
to the next, making it easy to create compound objects from several primitives,

FIGURE 23.3. Shader space (also Plate VIII)

It is also possible to shade in “camera” space, which gives the position of the
object relative to the camera. Using this would cause objects to change their
appearance as the camera moves which would generally be undesirable, but you
can use it to create “intelligent” surfaces which change as you look at them.

Projections and Coordinate Spaces 173

If none of these coordinate systems is appropriate, it is also possible to create
new named coordinate systems in a RIB file using the command

CoordinateSystem “name”.

You can then refer to this named coordinate system from shaders, just as you can
the standard coordinate spaces.

——
More Complex Projections

When painted or photographed textures are used you often need to project them as
if from a single point, rather like a slide projector. This is a perspective transforma-
tion, and is achieved by dividing the x and y values by the z depth as in Listing 23.4.
This particular shader projects a texture from the camera rather like a traditional front
projection system. This matches the way the camera projects back onto the film, and
hence the result shown in Figure 23.4 (also Plate VIII) is a different effect to that seen
in Figure 23.1, which used an orthographic projection in camera space.

Listing 23.4 Perspective projection.

point PP=transform(“camera”, P) ;

float repeatCount=20;

float ss=xcomp (PP)/zcomp (PP)* repeatCount;
float tt=ycomp (PP)/zcomp (PP)* repeatCount;
Ct=color cellnoise(ss, tt);;

FIGURE 23.4. Perspective projection (also Plate VIII)

174 Essential RenderMan

For certain objects (such as the heads on characters) the most appropriate
projection is a cylindrical one. This takes the z coordinate as the t component,
and the angle around the axis as the s component. In can be calculated by the
code in Listing 23.5. The resulting image in Figure 23.5 (also Plate VIII) is
textured as if you had wrapped the texture onto a cylinder, then shrink-wrapped
it onto the object.

Listing 23.5 Cylindrical projection.

point PP=transform(“object”,P);

float repeatCount=10;

float ss=atan (xcomp (PP) ,zcomp (PP)) /
(2*PI) * repeatCount;

float tt=ycomp (PP)* repeatCount;

Ct=color cellnoise(ss, tt):;

FIGURE 23.5. Cylindrical projection (also Plate VIII)

The other common projection type is spherical, as in Listing 23.6. This textures
the object in a similar fashion to the standard st coordinates of a sphere, but may
be used for any kind of geometry which is of approximately spherical shape.
While ss is as it was for cylindrical projection, the tt coordinates are mapped
differently. This is particularly noticeable at the top of the objects, as seen in the
right-hand sphere of Figure 23.6 (also Plate VIII), and so you might use it in pref-
erence to cylindrical if you needed to look down at the top of a character’s head.

Projections and Coordinate Spaces 175

Listing 23.6 Spherical projection.

float repeatCount=10;

float ss, tt;

vector PP=transform(“object”,P);

PP=normalize (PP) ;

ss=(atan (xcomp (PP) , zcomp (PP)) / (2*PI)) * repeatCount;
tt=acos (ycomp (PP)) /PI*repeatCount;

Ct=color cellnoise(ss, tt);

FIGURE 23.6. Spherical projection (also Plate VIII)

—
Solid Textures

Rather than projecting the point P into two dimensions, and using the 2D coordi-
nates as the basis for texturing, you could skip the projection stage completely,
and use the value of P directly to construct a texture. This creates a texture that
changes smoothly regardless of how the surface is shaped, and produces an object
that appears to have been carved from a solid block of the material. For this
reason such textures are generally referred to as solid textures. Extending our
tiling examples to three dimensions, you can carve the spheres from cubes of
color as in Listing 23.7 and Figure 23.7 (also Plate VIII).

176 Essential RenderMan

Listing 23.7 Spheres carved from cubes.

point PP=transform(“object”,P);
float repeatCount=5;
Ct=color cellnoise (PP *repeatCount) ;

FIGURE 23.7. Spheres carved from cubes (also Plate VIII)

Solid textures avoid the appearance that a pattern has simply been pasted onto
the surface of an object, but rather that it is a real part of the object. We will see
how this can be used to create wood and marble effects in Chapter 26.

—
More Coordinate System Transforms

We have so far assumed that you are transforming a point from the default
“current” space to a new coordinate system. However, you might need to
transform from this new coodinates system to a third or even back to current.
This can be done by passing both “from” and “to” coordinate systems to the
transform function. For example:

Point origin=transform(“camera”, “object”,
point (0,0,0));

calculates the position of the camera in object space, by transforming the point
0,0,0 from camera space to object space.

Projections and Coordinate Spaces 177

You should take care as to exactly what kind of vector we are transforming. So
far, only points have been transformed, but surface normals and free vectors may
also be transformed between coordinate systems. Different types of vector need
to be changed in different ways when converted. Transform () is designed to
transform points. To make sure that you get the correct type of conversion you
should use the functions vtransform () and ntransform () for vectors and
surface normals, respectively.

When writing textures which are based on the 3D position of the surface, it is
often useful to allow the end user to choose the coordinate system in which
texturing is to be done, so that the completed shader can be used on a wide range
of surfaces. This is easily achived by adding a parameter, as in Listing 23.8

Listing 23.8 A space parameter.

Surface mySurface (
string space=“world”
)
{

point PP=transform(space,P);

Summary

PP=transform([fromspace], tospace, P) ;
VV=vtransform([fromspace], tospace,V);
NN=ntransform([fromspace], tospace,N) ;
Transform a point, vector and normal respectively from fromspace (which
defaults to current) to tospace.

"object"
The coordinate system in which the object was created — for example the center
of a sphere. Objects may be transformed, but if object space is used then the tex-
ture will move with them.

"shader"
The space in which the shader was specified in the RIB file.

"world"
The coordinate system at Wor1dBegin.

"camera"
The coordinate system with the camera at the origin.

Chapter 24

Painted Textures

Introduction

Though writing code is a powerful way of texturing objects, sometimes it is
simply easier to paint something by hand then apply that to the object. We are
now going to see how that can be done in RenderMan, but more importantly we
will look at how painted textures can be combined with procedural textures to
give the user the maximum power and control.

Accessing Image Files

Some patterns can be constructed easily using SL code, but for other types of
pattern it is clearly easier to paint or photograph the required design, then apply
this image to the three-dimensional object. Even in these cases, however, a shader
is still required: first to calculate which point on the source image (known as a
texture map) corresponds to the surface point being shaded, and then to define
how the value from the map will affect the surface.

The most obvious and simplest use of a texture would be to take Ct from the
map using the default texture coordinates (s and t). You can do this trivially by
using the code in Listing 24.1. The renderer does all the hard work for you, taking
into account the file format, and resolution, resizing it automatically to fit the
object, to produce an image like Figure 24.1.

Listing 24.1 Applying a texture.

Ct=color texture (“myTexture.tiff”).

179

180 Essential RenderMan

FIGURE 24.1. Applying a texture

Generally the texture map will be provided by the user of the shader when it is
applied in a scene. You should therefore make the name of the map a parameter
of the shader, so that it can be specified at render time. In such cases, the shader
usually contains code similar to Listing 24.2, which first checks that a file name
has been provided, so that if the user chooses not to provide a map, the shader
will still operate correctly. In order to simplify the examples in this chapter,
however, we will continue to hard code the file names.

Listing 24.2 Anoptional texture map.

surface param (
string mapname="“";
o)
{

if (mapname !=%“")

Ct=color texture (mapname) ;
else

Ct=Cs;

The textures we will be using are in TIFF format. However, most renderers have
a preferred image file format, which has been optimised so texture lookups are as
efficient as possible. Before you can use a texture with a particular renderer it usu-
ally has to be converted into this format, using a program provided with the renderer.

Painted Textures 181

This should be explained in your renderers documentation. The filename of the
converted image should be used in the shader rather than the TIFF filename.

—
Procedurally Modifying a Texture Map

The texture function automatically wraps the texture onto the surface using s and
t. As you have learnt, however, simple patterns can be augmented by modifying
the texture coordinates before you generate a pattern. In exactly the same way we
can calculate new texture coordinate, and ask texture() to use these to posi-
tion the map on the object. In Listing 24.3 we have combined the texture lookup
with some standard tiling code to cover the object with copies of the image as
shown in Figure 24.2. Combining SL with a texture map gives you total control
over texture placement, as you can use any function to generate the texture coor-
dinates. For example, in Listing 24.4 we have added a sine wave to ss, and hence
deformed the image as in Figure 24.3.

Listing 24. 3 Tiling a texture map.

float sRepeatCount=12;

float tRepeatCount=5;

float ss=mod(s*sRepeatCount,1) ;
float tt=mod(t*tRepeatCount,1) ;

Ct=color texture (“pebbles.tiff”,ss, tt);

FIGURE 24.2. Tiling a texture map

182 Essential RenderMan

Listing 24.4 Distorting a texture map.

float sRepeatCount=12;
float tRepeatCount=5;
float ss=mod(s*sRepeatCount,1);
float tt=mod (t"tRepeatCount,1);

ss=mod (ss+0.2*sin (t*20) ,1) ;

Ct=color texture (“pebbles.tiff”,ss,tt);

FIGURE 24.3. Distorting a texture map

You could even use cellnoise() to randomly select between a number of
images for each tile, as we have done in Listing 24.5. This combination of coded
and painted textures allows you to avoid one of the primary problems of texture
maps—that they are always the same. Here we have created a texture which can
be applied to as large an area as we require yet will never repeat, as seen in Figure
24.4. Of course these textures do not tile together correctly, and hence the joins
are very apparent, but by carefully repainting the texture maps, and using a
slightly more complex shader, the results could be convincing.

Painted Textures 183

Listing 24.5 Mixing between texture maps.

float sRepeatCount=17;
float tRepeatCount=11;
float ss=s*sRepeatCount;
float tt=t*tRepeatCount;

if (float cellnoise(ss,tt)>0.5)
Ct=color texture(“pebbles.tiff”,
mod(ss,1),mod(tt,1));
else
Ct=color texture (“rock.tiff”,
mod(ss,1l),mod(tt,1));

FIGURE 24.4. Mixing between texture maps

O —
Maps as Controls for Procedural Textures

Rather than simply using a texture map as an image that is painted onto the
surface and using code to control it, you can also use the painted map to control
procedural elements of the shader. Suppose you wish to model a surface that
shiny in parts, but matte in other places. Rather than trying to provide parameters
to the shader defining which areas are shiny, you could use a texture map to let
an artist indicate which areas are specular by simply painting them. In this case,
the texture is not being used as a color, but simply as a control. We use “float
texture” rather than “color texture” to indicate we want a grayscale
value (just as we did with cellnoise).

184 Essential RenderMan

Such an example is shown in Listing 24.6. The texture map is not used as a
color—Ct is constant, but rather the texture map modifies the weighting of spec-
ular and diffuse lighting. The resulting image is shown in Figure 24.5.

Listing 24.6 Using a map as a control.

float sRepeatCount=9;
float tRepeatCount=5;
float ss=mod(s*sRepeatCount,1);
float tt=mod(t*tRepeatCount,1);

float surfaceType=float texture (“ShinySurface.tiff”,

ss, tt);
Ce=Csyg
01=0s;
Ci=01i " (Ct*(Ka*ambient ()+surfaceType*diffuse (Nf))+

(1-surfaceType) * specular (Nf,V, roughness)) ;

FIGURE 24.5. Using a map as a control

I
Environment Maps

Texture maps accessed by surface coordinates are the simplest and most common
form of map, but 2D images may be applied to surfaces in other ways. While
most renderers now support ray tracing, it is usually slow. In many cases envi-

Painted Textures 185

ronment maps can provide a much faster and more flexible alternative. If you are
trying to mix CG with live action, you can even use them to create reflections of
real objects.

The basic assumption made when using environment maps is that you are
rendering a small object in a big world. If we were using ray tracing then a ray
from the camera would hit a point on the object’s surface, and then a reflected
ray would be traced back into the rest of the scene. However, if the object
were very small and the environment very big it would not matter very much
which point on the surface of the object the reflected ray originated from—we
only need to worry about the direction of the reflected ray, as illustrated in
Figure 24.6.

FIGURE 24.6. A Small object in a big world

If we were to photograph or render the scene from the centre of the object and
stitched the images together into a panoramic view, then you could extract the
color of the environment in any direction from the photograph. Such a photo-
graph is an environment map. Of course, it is only an approximation, as the point
being rendered is not actually at the centre of the object. Despite this, it is usually
an approximation that is good enough to fool most of the people most of the time.

186 Essential RenderMan

As we only need to produce one map for the whole object and this map can be
reused to render multiple frames, then this is potentially much more efficient than
ray tracing.

O —
Generating Environment Maps

When generated by rendering or from photographs, environment maps usually
take the form of six square images, one each in the positive and negative x, y, and
z directions, forming the six faces of a cube around the object. Such a collection
of image is usually displayed as in Figure 24.7. These are stitched together by the
MakeCubeFaceEnvironment RIB command. This takes the six input files
followed by the name of the output file, and a field of view value for the input
images. This should generally be a little over 90° so that there are no gaps
between the images. The final parameters describe how the image should be
filtered: “gaussian” 2 2 are appropriate values.

FIGURE 24.7. A cube faced environment Courtesy of Jermome Dewhurst.
www.photographica.co.uk

Painted Textures 187

While the cubic form is easy to render and photograph, it does have the disad-
vantage of not being a single image. This makes it hard for artists to work with in
paint packages, and other image manipulation tools. You may prefer to use a
polar form of environment map shown in Figure 24.8. This unwraps the texture
from the surface of a sphere in the same way as a world map is unwrapped from
a globe. Though the whole map is a single image it must still be converted to your
renderer’s proprietary format using the RIB command MakeLongLat-
Environment. Being simpler than the cubic form this simply requires an input
file, an output file name, and a filter function(“gaussian” 2 2). A stand-
alone program to generate environment maps from either cubic or polar images
may also have been supplied with your renderer.

FIGURE 24.8. A polar environment Courtesy of Jermome Dewhurst.
www.photographica.co.uk

O —
Applying Environment Maps

Once converted to the renderer’s internal format, we can forget how an environ-
ment was generated and concentrate upon using it in our shader. To do this, we
need to first calculate the direction of reflection, and then find the color of the
map in that direction. While it is quite simple to calculate the direction of reflec-
tion from the position of the viewer and the orientation of the surface, RenderMan
can to do the work for us. By simply calling the reflect () function as in
Listing 24.7, the required direction is calculated. Note that reflect () is sim-
ply a geometric calculation which works out the direction of the new ray, and is
not performing any kind of ray tracing.

188 Essential RenderMan

Listing 24.7 A reflective surface.

surface reflect (
float Ka=1;
float Kd=.5;
float Ks=.4;
float Kr=.3;
float roughness=.1;
color specularcolor=1;)

normal Nf=faceforward (normalize(N),I);

vector V=-normalize (I);

color Ct;

vector Rcurrent=reflect(I,Nf);

vector Rworld=vtransform(“world” , Rcurrent) ;

color Cr=color environment (“studio2.]jpg”,Rworld) ;

Ct=Cs;

0i1=0s;

Ci=0i* (Ct* (Ka*ambient ()+Kd*diffuse (Nf))+
specularcolor* (Ks*specular (Nf, V,roughness)+
Kr*Cr)) ;

Once you know the direction of reflection you simply have to pass this, along
with the name of the map, to the environment () function, and the correct value
from the map is returned. However, be sure to convert the direction to an appropri-
ate space (probably wor1d), so that the environment map is correctly oriented onto
the object. As the value from the environment map represents reflected light we
have added it into the plastic shading model with the specular contribution.

The resulting reflections seen in Figure 24.9 (also Plate X) are not physically
accurate but will be close enough to fool all but the most critical viewer. Often
even a very basic environment map can dramatically increase the realism of
objects.

Painted Textures 189

FIGURE 24.9. A reflective surface (also Plate X)

——
Summary

float x=texture (“filename” [,ss, tt]):;

color c=texture(“filename” [,ss,tt]);
Read the texture file “filename” at the position ss, tt. The texture coordinates
are optional. S, t will be used if none are specified.

Vector R=refect (I,N);
Calculates the direction R that is the reflection of the vector I in a surface with
normal N.

float x=environment (“filename”,R);
color c=environment (“filename”,R);
Read the environment map “filename” in the direction R.

MakeCubeFaceEnvironment “px” “nx” “py” “ny” “pz” “nz”
“envmapname” fov “gaussian” 2 2
MakeLongLatEnvironment “srcmapname”
“envmapname” “gaussian” 2 2
These RIB commands create an environment map called “envmapname.” The
first takes six images each covering approximately 90° in the positive and nega-
tive X, y, and z directions. The second uses a single polar map.

190 Essential RenderMan

Related Functions

vector R=refract(I,N,eta)

Refract () calculates the direction of refraction as reflect () does for
reflection. Eta is the ratio of the two refractive indices at the surface.

fresnel (I,N,eta,Kr,Kt,R,T)
Fresnel () calculates both reflection and refraction directions (returned in

R and T) along with suggested values as to how these should be weighted when
mixed with the rest of the shading calculation (Kr and Kt).

Chapter 25

Displacement

Introduction

Shaders can not only change the color and lighting across a surface but can actu-
ally change the shape of the surface—a technique known as displacement. This
allows you to produce simpler models then fill in surface detail at render time.

Modifying P

In addition to using P (the surface position) to calculate texture coordinates in a
surface shader it is also possible to modify P, and in doing so change the shape
of the surface. For greater flexibility, and to ease implementation, changing the
position of a point on the surface is done in a separate shader to the calculation
of surface color. This is known as a “displacement” shader, and is run before
the surface shader: the renderer creates a smooth surface, runs the displacement
shader to find its final position and orientation, and then runs the surface shader
to find its color. This process is shown in Figure 25.1.

Displacement
shader

\ J
-

I > Surface

Ci
Cs shader

FIGURE 25.1. The displacement process

191

192 Essential RenderMan

Officially, the position of a surface should only be modified by a displacement
shader but in practice most renderers also allow displacement to be performed in
a surface shader. Displacing in a surface shader allows calculations to be per-
formed once, and then used for both displacement and coloring (for example,
embossing a colored stripe on a surface), while a separate shader allows a dis-
placement to be mixed with a variety of surface types. In practice, both approaches
are used, though we will use displacement shaders, as this is the method that is
most portable.

While it is possible to assign any value to P, displacement typically consists
of moving the surface in or out a short distance along the surface normal. The
displacement shader’s job is therefore to calculate the magnitude of this
displacement for each point. Most displacement shaders have a structure similar
to Listing 25.1.

Listing 25.1 A simple displacement shader.

displacement simple (
float Km=0.1;)
{

normal NN=normalize (N) ;
float mag=0;

/*Calculate mag’/

mag=sin (s*10*2*PI) *sin (t*10*2*PI) ;
/*Displace®/

P=P+mag*Km*NN ;

N=calculatenormal (P) ;

The surface normal vector can have varying length, so it is first normalized,
ensuring its length does not affect the displacement. You can then insert some
arbitrary calculation for mag—here we have used a combination of sine waves in
s and t. Displacement is performed by adding some multiple of NN to the cur-
rent position, and assigning it back to the variable P. A parameter to the shader
Km provides a control over the total amount of displacement.

Having moved the points of the surface, its curvature will have changed and
hence we must recalculate the surface normals () by using the function calcu-
latenormal (). Though simple, the combination of shape and lighting pro-
duces a remarkably interesting pattern when applied to a sphere as in Figure 25.2.

Displacement 193

FIGURE 25.2. A displaced sphere

In the same way that we calculated Ct in the surface shader and then placed
that code into a standard framework, for most displacement shaders you simply
need to calculate mag. To arrive at a value for mag, you can apply any of the
techniques used so far. For example, to emboss a circle onto a surface as in
Figure 25.3, we can use the same approach we used to draw a colored circle as
in Listing 25.2.

Listing 25.2 Embossing a disk.

displacement disk (
float Km=0.1;)
{
normal NN=normalize (N) ;
float mag=0;
float fuzz=0.05;

/*Calculate mag”/
float dist=sqrt((s—0.5)*(s-0.5)+(t—-0.5)*(t-0.5)) ;
mag=smoothstep (0.3—-fuzz,0.3+fuzz,dist) ;

/*“Displace”/
P=P+mag*Km*NN;
N=calculatenormal (P) ;

194 Essential RenderMan

FIGURE 25.3. Embossing a disk

O —
Displacing in the Right Space

While these shaders will operate correctly, their exact behavior is not consistent
between different renderers. As we discussed, earlier, all shading is done in coor-
dinate space known as “current” but the exact meaning of this space is left to
the designer of the renderer. While we know the value of N in “current” space, it
is unclear what the length mag means in any particular space. If “current”
space were equivalent to object space then the displacement would scale with the
object, while if “current” were “camera” space then scaling the object would
leave the displacement unaffected. Figure 25.4 shows a sine wave pattern
embossed onto two spheres—the second sphere being a scaled version of the first.
Unfortunately, because the displacement has been performed in “current”
space the displacement is the same size in both cases, which is unlikely to be the
effect you want.

Displacement 195

FIGURE 25.4. Displacing in current space

While there is no correct space in which displacement distances should be
specified, “object” or “shader” are probably most appropriate, and this can
be implemented by including the line:

mag /= length(vtransform(“object”,NN)) ;

This scales the displacement by the length of N in object space, and hence mag is
now relative to that space. Figure 25.5 shows the effect of adding this to the pre-
vious code to produce the shader in Listing 25.3. The displacement has now been
scaled, so the two objects correctly appear to be scaled versions of each other. Of
course you may choose to displace in other spaces, such as “shader” or
“wor1d.” For maximum flexibility the displacement space can be specified by a
parameter to the shader.

196 Essential RenderMan

Listing 25. 3 Displacing in object space.

displacement object (
float Km=0.1;)

{
vector NN=normalize (N) ;
float mag=0;

/‘Calculate mag*/

mag=sin (s*10*2*PI) *sin(t*10*2*PI);

mag /= length (vtransform(“object”,NN)) ;
/"Displace”/

P=P+mag*Km*NN;

N=calculatenormal (P) ;

FIGURE 25.5. Displacing in object space

You may find that that when using displacement your objects appear to tear
along horizontal and vertical lines. This is caused when the displacement shader
moves an object to a part of the image the renderer did not expect it to be in. By
the time this is discovered, that part of the image may already have been com-
pleted, in which case it is too late to add the displaced object. This can be avoided
by warning the renderer about the displacement distance using a RIB command
similar to:

Attribute “displacementbound” “sphere” [1]
“space” [“object”]

Displacement 197

which specifies that the objects which follow will have points displaced up to a
distance of 1 unit in object space.

Not Moving P

As an alternative to actually moving the point, we may choose to simply re-orient
the surface at that the point, so that it is lit as if it were displaced, but the points
remain in their original position. This approach is called bumping, and while it
may not always appear as convincing as true displacement it puts less strain on
the rendering engine, and can reduce artifacts. It is also guaranteed to work
correctly in surface shaders.

To bump a surface, simply calculate the new surface position, as if for
displacement, but do not assign the position back to P. We then use this position,
which is typically called PP to calculate the new surface normal. A bumped ver-
sion of the previous displacement is shown in Listing 25.4. When this is rendered
in Figure 25.6 you can see that while bump mapping works well on the smaller
object, it becomes obvious that something is wrong, as the sphere becomes larger.

Listing 25.4 A bump shader.

displacement simpleBump (
float Km=0.1;)

vector NN=normalize (N);
float mag=0;
point PP;

/*Calculate mag”/
mag=sin(s*10*2*PI) * sin (t*10*2*PI) ;
mag /= length (vtransform(“object”,NN)) ;
/"Displace”/

PP=P+mag” Km'NN;
N=calculatenormal (PP) ;

198 Essential RenderMan

FIGURE 25.6. Bumped spheres

As the processes of bumping and displacing are so similar, it is good practice
to provide the user of a displacement shader with the option of either bumping or
displacing. You can do this with a simple parameter, as shown in Listing 25.5.
This shader incorporates all of the improvements we have made and can be used
as a standard template for displacement shaders.

Listing 25.5 A standard displacement shader.

displacement standardDisplace (
float Km=0.1;
string space="“object”;
float trueDisp=1;)

vector NN=normalize (N) ;
float mag=0;
point PP;

/*Calculate mag”/
mag=sin (s*10*2*PI) *sin (t*10*2*PI) ;
mag /= length(vtransform(space,NN)) ;

/*Displace”/
PP=P+mag*Km*NN;
N=calculatenormal (PP) ;
if (trueDisp==1)

P=PP;

Displacement 199

Summary

normal N = calculatenormal (P);
Calculates the new surface normal for a surface which has been moved to posi-
tion P.

mag /= length (vtransform(“space”,normalize (N)));
Scale mag so that it’s length is now relative to the coordinate system space

Attribute “displacementbound” “sphere” [dist]
“space” [“space”]
Specifies (in a RIB file) that the following surfaces may be displace up to a
distance dist in the coordinate system space.

Chapter 26

Noise

Introduction

The patterns we have developed so far enable us to construct geometric designs
on the surface of objects, but even the most carefully manufactured objects have
imperfections. It is precisely these imperfections which give real world objects
their sense of scale and physical presence. We will now consider how you can use
a shader to roughen a surface, avoiding the mathematically perfect appearance
that instantly marks an image as computer generated.

Controlled Randomness

To add visual interest to a surface we need to introduce some kind of randomness,
but using a standard random function would be of little use. A normal random
number would be totally different from frame to frame, and renders would simply
not be repeatable. The cellnoise () function is works because while it returns
an apparently random value, that value is always the same for each cell. This is
possible because the cells are based on integers—cell number 1 is always cell 1.
However, if we were to attempt to build a similar function which used, for exam-
ple, the exact value of P to produce a random number, the results would be
useless, as P will change minutely from frame to frame.

These problems are solved by a function known as noise (). This generates
a value which can be used to provide randomness in our textures, but it changes
smoothly. Small changes in the input produce small changes in the output,
making it tolerant to small movements, and numerical errors.

201

202 Essential RenderMan

Noise

The noise function in RenderMan can take a varying number of parameters,
and return a range of types (much like cellnoise()). The values returned are
guaranteed to be between 0 and 1, and average 0.5. The value returned is also
guaranteed to be 0.5 if the input is a whole number, and will change smoothly
between these “lattice points.” Within these limitations, the exact values returned
by noise() are unique to each renderer, but when used correctly, all renderers
will produce similar images. A sample from a typical noise() function is
shown in Figure 26.1.

noise(t)

FIGURE 26.1. Noise

You could assign a noise value to Ct as in Listing 26.1. This produces a gently
changing brightness over the surface. However, by scaling the texture coordi-
nates, as in Figure 26.2 you can produce noise at a range of frequencies. While
noise is random at larger scales, it is smooth when viewed more closely. This
allows you to use noise to add visual interest at various levels of detail.

Listing 26.1 Noise over a 2D surface.

float repeatCount=10;
Ct=float noise (s*repeatCount, t*repeatCount) ;

Noise 203

FIGURE 26.2. Noise over a 2D surface at a range of frequencies:
(a) repeatCount = 2 (b) repeatCount = 4 (c¢) repeatCount = § (d) repeatCount = 16

In Listing 26.2 we have based the noise value on P rather than s and t,
resulting in a noise value which can be used as the basis of a solid texture
(Figure 26.3 and Plate VIII). Note how the texture runs smoothly between the
two spheres as if they were carved out of a single block of material. We have
also used the “color” form of noise() which returns a color rather than a
single floating point value.

Listing 26.2 “Solid’noise.

204 Essential RenderMan

FIGURE 26.3. Solid noise (also Plate VIII)

——
Distorting Texture Coordinates

Rather than assigning noise directly to a surface, or mixing it into another color,
you can also achieve useful results by using noise to distort the texture coordi-
nates. This will break up the straight lines that are generated by simple pattern
code. Figure 26.4 (also Plate IX) was created by the shader in Listing 26.3,
which uses noise () to distort the surface coordinates so that cellnoise ()
produces randomly shaped patches of color, rather than squares. The offset of
100, is added to P in the second noise () call, is so that the distortion in t is
different to the distortion in s. Any value could be used provided it is reasonably
large.

Listing 26.3 Using noise to deform textures.
float ss=s+float noise(P*5)*0.5;

float tt=t+float noise(P*5+point(100,100,100))*0.5;
Ct=color cellnoise(ss*10,tt*10);

Noise

FIGURE 26.4. Using noise to deform textures (also Plate IX)

205

This approach is incredibly powerful, as it prevents your surfaces from appearing
too geometric. For example, it can be used to generate wood textures, by deforming
a series of concentric cylinders representing tree rings, as shown in Listing 26.4 and
Figure 26.5. As both the noise and cylinders are based upon the value of P rather
than surface coordinates, this is a solid texture, giving the appearance that the teapot
is made out of wood rather than simply having a wood veneer applied to its surface.

Listing 26.4 A wood texture.

color
color
point
float
float

lightWood=color “rgb” (1,0.6,0.5);
darkWood=color “rgb” (0.3,0.2,0.2);
PP;

scale=0.06;

1g

/’Generate a distored P in shader space’/
PP=transform(“shader”, P) *scale;
PP=PP+point noise (PP*10)*0.1;

/*Calculate radius*/
l=sqrt (xcomp (PP) *xcomp (PP) +ycomp (PP) * ycomp (PP)) ;

/*mix between light and dark wood*/
Ct=mix (darkWood, lightWood, mod (1*8,1)) ;

206 Essential RenderMan

FIGURE 26.5. A wood texture

—
Layering Noise

In the real world, surfaces often have many layers of detail, with large-scale course
features being further modified by smaller more subtle marks. You can simulate
this by applying layers of noise at a range of frequencies as in Figure 26.6.
This image was generated by Listing 26.5, which uses a loop to apply six layers
of noise at increasingly high frequencies.

Listing 26.5 Layering noise.

Noise 207

FIGURE 26.6. Layering noise

The RenderMan noise () function returns a value between 0 and 1 with an
average of 0.5, but by subtracting 0.5 and multiplying by two we have scaled it to
the range —1 to +1. In most applications of noise other than RenderMan, this is
the normal form of noise used. We have used this modified form of noise in
Listing 26.5 as its average is 0, so that the average value of mag is not changed
as more layers are added.

At each layer, the noise value is divided by frequency so that the higher fre-
quency layers have a smaller amplitude than the courser ones. This construct is
known as fractional Brownian motion, or more simply fBm, and is used regularly
in shaders, as it closely models many structures found in nature. Simply using mag
as a displacement, as in Listing 26.6, creates a dented appearance as in Figure 26.7.

Listing 26.6 {Bm displacement.

displacement fbmDisp (
float Km=0.1;
)

vector NN=normalize (N) ;
float 1i;

(Continued)

208 Essential RenderMan

float mag=0;
float freg=1;

for(i=0;i<6;i+=1)
{
mag+=(float noise (P*freq)-0.5)*2/freq;
freg*x=2.1;
}
mag /= length(vtransform(“object”,NN)) :;
P=P+mag*NN*Km
N=calculatenormal (P) ;

FIGURE 26.7. fBm displacement

I
Turbulence

A function closely related to fBm is turbulence. This is very similar both in appear-
ance and implementation, but has a more jagged look, as shown in Figure 26.8.

Noise 209

FIGURE 26.8. Turbulence

Examining Listing 26.7 reveals that turbulence is almost exactly the same as
fBm but uses the function abs () which takes the absolute value, ignoring the
sign of the noise. This “folds” the noise creating a discontinuity that makes
turbulence appear subtly different to fBm.

Listing 26.7 Turbulence.

float 1i;
float mag=0;
float freg=1;

for(i=0;1i<6;i+=1)
{
mag+=abs (float noise (P*freq)—-0.5)*2/freq;
freg*=2;
}
Ct=mag;

210 Essential RenderMan

You can control the exact nature of turbulence and fBm by reducing the num-
ber of layers, changing the difference in frequency between layers (known as the
lacunarity), or by modifying the value by which each layer is scaled. A generic
form of turbulence that incorporates these options as parameters is shown in
Listing 26.8.

Listing 26.8 A more flexible turbulence.

One common use of mag would be as the blend parameter of a mix (). You
can also use it to blend between a greater range of colors using the spline ()
function, which takes a variable number of colors (the minimum being four) and
uses the first parameter to blend between them, as in Listing 26.9. By selecting
the right set of colors this technique can be used to produce a wide range of
effects including rock textures such as marble (Figure 26.9 and Plate VII), and
flame like textures.

Noise

Listing 26.9 Using turbulence with a spline.

212 Essential RenderMan

FIGURE 26.9. Using turbulance with a spline (also Plate VII)

——
Summary

X=float noise(s);
X=float noise(s,t);
X=float noise(P);
X=float noise (P, t);
Generate a pseudo random number based upon either a single parameter, a pair
of texture coordinates, a 3D point, or a point and a number (the number is often
used to represent time, generating a texture which animates from frame to frame).
The value returned will be between 0 and 1, will average 0.5, and will be equal
to 0.5 when all of the parameters are whole numbers.

C=color noise
C=color noise
C=color noise(P);
C=color noise (P, t);

As for float noise (), but the value returned is a color.

s);
s, t);

—~ o~~~

C=spline(t,cl,c2,c3,c4, . . .);
Spline blends between a set of colors. The first parameter controls the blend, and
can be followed by any number of colors, with a minimum of 4.

Chapter 27
Aliasing

Introduction

‘When an object is viewed from far away, in the real world the fine surface detail will
become invisible. Unless great care is taken, however, a computer-generated scene
will produce unpredictable and ugly results when it contains details that are too small
to be fully represented on the screen. This effect, known as “aliasing,” is a constant
problem for all rendering systems, and has no simple solutions. In this chapter we will
look at some techniques you can use in your shaders to try and manage the problem.

What is Aliasing?

We have so far considered shaders as describing a point on the surface, and
assumed that the renderer will correctly reconstruct the surface from these points.
While this model is adequate for many purposes it falls down when the features
we are trying to describe on the surface become so small that they fall between
the points that the renderer has picked. Figure 27.1 shows the results of rendering
Listing 27.1 (based on on the checkerboard shader we wrote in Chapter 22) at
increasingly high values of repeatCount. Even at low frequencies the edges
of the squares appear ragged, but as the checkerboard pattern becomes finer, the
results become very ugly. In certain cases the high frequency pattern can even
appear to be of a much lower frequency.

Listing 27.1 A naive checkerboard shader.

float ss=s*repeatCount;
float tt=t*repeatCount;
float sTile=floor(ss);
float tTile=floor(tt):;
Ct=mod (sTile+tTile, 2);

213

214 Essential RenderMan

FIGURE 27.1. Aliasing of the checkerboad shader: repeatCount = (a) 20 (b) 40 (c¢) 80
(d) 160 (e) 320 (f) 640

Aliasing 215

These artifacts become an even greater problem if you attempt to use the
shader in an animation, as they will jump and flicker from frame to frame.
Increasing PixelSamples, and reducing ShadingRate in the RIB file can
help by instructing the renderer to use more points, but ultimately, no matter how
close together the sampled points are, some features may fall between them.

Rather than considering the shader as describing a collection of points, it is
necessary to consider the process of shading as operating on a grid of small squares.
In most rendering systems these are known as micropolygons. When the color of
the surface is changing slowly then a point sample is a good approximation to the
average color of the micropolygon, but if there is too much fine detail (perhaps
simply because the camera has moved away from the object) then the approxi-
mation will be poor, and the resulting image will suffer from sampling artifacts.
Rather than calculating the surface color at a single point the shader should be
written to calculate the average color of the square.

Softening Edges

One of the most common ways in which fine detail can be inadvertently intro-
duced into an image is simply by having a sharp edge. If the shader is written to
calculate its result at only a single point, it will fail to represent any square which
spans the sharp edge correctly. A square which should be 50% in and 50% out of
a region will be shaded as completely in or out depending on where the sampling
point falls. We have already come across this problem and addressed it by replac-
ing “i £” statements with the smoothstep () function.

Smoothstep () does not calculate the exact proportion of the square that
falls on either side of the transition. Instead, it replaces the sharp transition with
a more gentle transition such that the point samples can change slowly from being
inside to being outside. A point in the middle of the transition will correctly return
0.5, as if it were a square partially overlapping the two regions.

Earlier we used a variable “fuzz” to define the width of the transition region.
A large value of fuzz should avoid aliasing but will produce a soft transition
resulting in a blurring of the surface detail. The alternative of using a small value
of fuzz avoids this blurring but may reintroduce aliasing. While it is perfectly
reasonable to hand tune fuzz for a few frames, if the shader needs to operate
correctly at a range of resolutions, we need to find an automatic mechanism for
generating an appropriate value for fuzz which balances these two extremes.

The information we need to calculate fuzz is provided by the surface
coordinates u and v. These are very similar to s and t but are locked to the sur-
face rather than being user defined. The position of the current point sample is
determined by u, v while the distance between the point samples is stored in the
variables du and dv. For example, if u=0.5 and du=0. 1 then the next sample
point will have u=0. 6. The shader therefore needs to consider a square from
u, v to u+du, v+dv, as illustrated in Figure 27.2.

216 Essential RenderMan

u+du,v+dv

FIGURE 27.2. u, v and du, dv

Though we now know the area we need to consider in terms of u and v, our
texture is probably written in terms of ss and tt. The way that any variable
changes across the surface can be found using the functions Du () and Dv ().
The value returned by Du (ss) approximates how quickly ss is changing in the
u-direction—technically known as the partial derivative. The difference between
ss at the current point and ss at the next point can therefore be approximated
using Du (ss)*du. Ss might also be changing in the v direction, so we arrive at
an approximation for “fuzz” (which we will now call filterWidth) by
adding together the magnitude of the changes in the two directions.

The code to do this is used in Listing 27.2. Here we have used filterWidth
in a shader that uses a sharp step in the top part of the object, and a smoothstep ()
in the lower part, to make the difference clear. Calculating £i1terWidth like this
produces a near optimal value of fuzz for the smoothstep. We therefore get a tran-
sition that is both sharp and alias free (Figure 27.3, also Plate IX). If the object were
to be re-rendered at a higher resolution,or you moved the object to be a different size
on the screen then £i1lterWidth should automatically adapt.

Listing 27.2 Automatically calculating fuzz.

float onRight;

float ss=s+0.1*t;
float filterWidth=abs (Du(ss)*du)+abs (Dv(ss)*dv) ;

Aliasing 217

if (£>0.5)
{
/*Use an IF in the top half to produce a sharp

edge*/
if (ss>0.5)
Ct=color “rgb” (0,1,0);
else
Ct=Cs;
}
else

{

/*Use a correctly filtered smooth-step*/

onRight=smoothstep (0.5 —-filterWidth,
0.5+ filterWidth, ss) ;

Ct=mix (Cs,color “rgb” (0,1,0),onRight) ;

}

FIGURE 27.3. Automatically calculating fuzz (also Plate IX)

O —
Analytical Antialiasing

As we now know the start and end of the region we are shading and we know the
function in between, we should be able to work out the average value over that
area. Point sampling provides the most basic approximation.

218 Essential RenderMan

Consider the simple cosine function shown in Figure 27.4. Provided that we sam-
ple it at least twice in each cycle then the approximation of point sampling is reason-
ably accurate. However, if the frequency of the wave increases then the point samples
become a poor fit to the actual signal. To remain accurate we would need to take the
point samples closer together. The more samples we take, the better fit we obtain.

FIGURE 27.4. Sampling Cos(ss)

Theoretically, if we could take an infinite number of samples, then the results
would be accurate no matter how the input signal changed. This is exactly what
the mathematical technique “integration” does. If we know the original function,
and can “integrate” it across the area of the micropolygon then we can accurately
average the function. Unfortunately integration is always complex (and often
impossible), but we can consider a few simple examples.

To correctly antialias the cos function, we need to evaluate

ss + fw
f cos (x) dx

RAY

The integral of cosine is sine and hence the definite integral over this region is:

[sin (01" = sin (ss + fw) — sin (ss)

X =55

You should then divide this by the width to find the average value over this region:

__sin(ss + fw) — sin (ss)
B fw

Shader code to implement this is shown in Listing 27.3. When s s changes slowly
the integrated version of the shader will appear exactly the same as cos (ss),
but at higher frequencies the samples of cos (ss) will become effectively ran-
dom (or worse), while the integrated version will fade to a single uniform color,
as shown in Figure 27.5.

val

Aliasing 219

Listing 27.3 Point sampling versus antialiasing.

float ss=s*scale;
float filterWidth=abs (Du(ss)*du)+abs (Dv(ss)*dv) ;
float val;
if (s>0.5)
{
val=cos (ss) ;
}
else
{
val=(sin(ss+£filterWidth)—-sin(ss))
/£filterWidth;
}
Ct=val*0.5+0.5;

N

FIGURE 27.5. Point sampling versus antialiasing

The left-hand side of the image in Figure 27.5 shows four regions of increas-
ing frequency which have been correctly antialiased. The low frequency at the
bottom is clearly visible while at the top-left the detailing is so fine that it has cor-
rectly blurred out to uniform color. The right-hand side of the image simply uses
point sampling, and as the frequency increases the results become inaccurate,
eventually producing a completely erroneous image.

220 Essential RenderMan

Integrating 2D Functions

So far we have considered a function of only one variable, but more often we have
a function that varies in both s and t. When we apply integration to a function of
more than one variable, the maths becomes slightly more complex and obscure,
as we need to use “vector calculus.” Typically, to integrate over a 2D area we have
to solve a double integral. For example, in the case of the function
sin(ss)*sin (tt) we need to evaluate:

tt+ tFw

ss + sFw
f f sin (x) sin (y) dydx
s 1

This is handled first by integrating with respect to y while considering x to be a
constant, giving:

ss + sFw

. +F
/;S sin (x) [— cos (y)]‘yt Tudx
and then integrating again, this time with respect to x while y remains constant.
If we solve this, and divide by the area of the micropolygon we arrive at:

_ (cos (ss) — cos (ss + sFw)) (cos (i) — cos (i + tFw))
- sFw.tFw

val

which is the average value of the function over the micropolygon. While this
looks complex, once you have gone through this procedure for a real case you
will discover that the cases we have tacked here are in fact particularly simple,
and it is generally even more difficult.

The real problem is that while you might think that once you have integrated
each function in your shader your aliasing problems are solved, this simply is not
the case. While a solution may be available for most individual functions, when
several functions are used together (known as composition), you can not simply
combine the integrals! More formally, if

AQ) = fa(x)dx
and
B(x) = fb(x)dx
then, in the general case
ABE) # [abE)dr
We should really be integrating the entire shader at once, including the lighting

models (a particular source of aliasing for displacement shaders) as a single func-
tion. Fortunately all is not lost—we are only interested in the appearance of our

Aliasing 221

objects after all, and in many cases integrating one or more “troublesome” func-
tions within your shader can produce dramatic improvements.

Frequency Clamping

Even for experienced shader writers with a strong mathematical background,
analytically antialiasing can be very difficult, or even impossible in many cases.
However, many functions have an average value that can be used when viewed
from a great distance. When examined at closer range point sampling is adequate.
We can therefore simply blend between these two values at the point where the
function starts to alias.

If we consider noise () it has a feature size of about 1—that is, to get a rea-
sonable approximation to the noise () function the filter width would need to
be less than approximately 0.5. We can use this knowledge to produce a noise tex-
ture that should not alias, as in Listing 27.4. When the filter width is less than 0.2
we have many samples, so the normal value of noise is perfectly adequate. If the
filter width is greater than 0.6 then the average value of 0.5 is used. Between these
two ranges the noise is faded out gradually.

Listing 27.4 Frequency clamped noise.

float filterWidth=abs (Du(ss) *du)+abs (Dv (ss) *dv) ;
float wval;

fade=smoothstep(0.2,0.6,filterWidth) ;
val=(1l-fade) * (float noise(ss))+fade*0.5;

This approach is commonly used with fBm, as shown in Listing 27.5. Here
we have calculated the noise function based on both ss and tt, so we need to
calculate a filter width in both directions, and fade out the noise based on the
largest filter. Rather than recalculating filter width each time round the loop, we
simply increase the filter width by freq, generating the same result.

Listing 27.5 Frequency clamped fBm.

float i;

float freg=1;

float mag=0;

float filterWidthSS=abs (Du(ss)*du)+abs (Dv(ss)*dv);

float filterWidthTT=abs (Du(tt)*du)+abs(Dv(tt)*dv) ;

float filterWidth=filterWidthSS>filterWidthTT?
filterWidthSS:filterWidthTT;

(Continued)

222 Essential RenderMan

Examining the results of this shader on the left-hand side of Figure 27.6 you
can see that even at low frequencies the antialiased version is a little softer than
the point sampled implementation on the right, while at high frequencies the
point sampled version is simply random noise.

FIGURE 27.6. Frequency clamped fBm

Aliasing 223

Checkerboard

While the principles of antialiasing are relatively straightforward, actually apply-
ing them in practice is somewhat more difficult. We will therefore attempt to
create a checkerboard, similar to the one we have previously constructed, but
avoiding the aliasing problems from which that suffers.

To antialias the checkerboard, we need to consider two aspects—first, we need
to soften the edges of the squares, by using smoothstep (). Second, we need
to consider the case where the squares are too small to be adequately represented,
and hence we will use frequency clamping to fade the board to a mid-gray.

If we decide that each square is one unit wide in ss and one unit high in tt,
then we need to consider the range 0-2 to generate a complete cycle. We will
therefore use mod () to create a 2 by 2 tile. Considering one direction at a time,
the obvious thing to do would be to transition from black to white at one and back
to black again at two. This places the transitions at the edges of our 2 by 2 tile,
which may be inconvenient. Instead, at approximately 0.5, we transition from
black to white and at 1.5 we transition from white to back. This can be done using
the code in Listing 27.6, which generates a set of vertical stripes as in Figure 27.7.
By duplication of this code in tt we could generate horizontal stripes.

Listing 27.6 Vertical stripes.

float repeatCount=40;

float ss=s*repeatCount+t;

float filterWidthSS=abs (Du(ss)*du)+abs (Dv(ss)*dv) ;
float smag;

ss=mod (ss,2) ;
smag=smoothstep (0.5—-filterWidthss,
0.5+ filterWidthsSsS, ss) ;
smag—=smoothstep (1.5—-filterWidthsSs,
1.5+ filterWidthsSS, ss) ;

Ct=smag;

224 Essential RenderMan

ul

FIGURE 27.7. Antialiased stripes

In Listing 27.7 we combine these horizontal and vertical stripes into squares.
To do this we need to scale smag and tmag into the range —1 to +1, multiply
them together, and then scale back into the standard 0-1 range. By doing this we
get a check pattern, as in Figure 27.8. This works because when smag and tmag
are the same we get a white square, while if they are different we get a black
square—an operation known as an Exclusive OR (Figure 27.9).

Aliasing 225

Listing 27.7 A basic checkerboard.

float repeatCount=40;

float ss=s*repeatCount+t;

float tt=t*repeatCount-s;

float filterWidthSS=abs (Du(ss) *du)+abs (Dv(ss)*dv);
float filterWidthTT=abs (Du(tt) du)+abs (Dv(tt)*dv) ;
float smag, tmag;

ss=mod (ss, 2) ;
tt=mod (tt, 2) ;

smag=smoothstep (0.5—filterWidthSS, 0.5+
filterWidthSS, ss) ;

smag—=smoothstep (1.5—filterWidthSS,1.5+
filterWidthSS, ss) ;

smag=smag*2-1;

tmag=smoothstep (0.5—filterWidthTT, 0.5+
filterWidthTT, tt) ;

tmag—=smoothstep (1.5—filterWidthTT, 1.5+
filterWidthTT, tt) ;

tmag=tmag*2-1;

Ct=(smag*tmag)/2+0.5;

FIGURE 27.8. A basic checkerboard

226 Essential RenderMan

*
— -t —_ -t
1

FIGURE 27.9. An Exclusive OR function

We now need to consider how the pattern will fade out as filter width increases.
Earlier we used the worst case filter width from the ss and tt directions, but
here we can filter each separately. This is a better approach as, due to the orien-
tation of the surface or the choice of different scales in the s and t directions, the
filter widths might not be the same.

One complete cycle of the stripes has a width of two and hence we must have a
filter width of less than one to accurately reproduce them. We therefore fade smag
and tmag to their mid-value as £i1terwidth reaches one. The resultant shader
is shown in Listing 27.8 is a significant improvement on the version in Listing
27.1, as can be seen by comparing Figure 27.1 to the results in Figure 27.10.

Aliasing 227

Listing 27.8 The completed checkerboard.

228 Essential RenderMan

e f

FIGURE 27.10. An antialiased checkerboad shader: repeat Count = (a) 20 (b) 40 (c) 80
(d) 160 (e) 320 (f) 640

——
Summary

Anti-aliasing is an on-going problem to which there are no simple answers. In
every shader a trade off must be made between the quality of the final image, the
range of shots for which the shader will be viable, the shader development time,
and the render time.

Chapter 28
Shading Models

Introduction

In many cases the standard plastic-like shading model will suffice, at least during ini-
tial shader development. As you progress, however, you shall want to refine the way
light interacts with your surface. RenderMan allows you to interrogate each of the
lights in the scene, and hence shade your surface in any way you feel is appropriate.

Inside the Standard Models

The diffuse () and specular () functions typically used to calculate the
shading of a surface collect the light from each of the light sources within the
scene and for each one work out how much will be reflected towards the camera.
While having this process automated for us is very convenient, if you need to
create new lighting models—for example, an anisotropic surface which reflects
light only in certain directions—then it is necessary to break open these functions
and implement them explicitly.

Diffuse

The standard diffuse model is defined such that the contribution from each light is:
Cl*normalize (L).normalize (N)

That is, the color of the light multiplied by the dot product of the incident light vec-
tor and the surface normal. To turn this into useful code we need to put this inside a
loop that visits each light in turn. This is done in Listing 28.1. T11uminance is a
looping construct unique to SL, which loops over all of the lights in the scene that
are visible from the point being shaded.

229

230 Essential RenderMan

Listing 28.1 Diffuse I11luminance model.

color Cdiff=0;
illuminance (P,Nf,PI/2)

{
Cdiff+=Cl*normalize (L) .Nf;

}

The three parameters to I11uminance are the point being shaded, the direction
of interest and an angle. These three variables define a cone, as shown in Figure
28.1. Any lights outside this cone are excluded from the loop. Within the loop,
the new global variables C1 and L are setup representing the color of the light,
and a vector from the surface to the light source. We simply need to apply the
lighting model of our choice and add that to the total light recorded so far.

llluminance (P, N, 6)

FIGURE 28.1. The parameters to 11 luminance

Specular

Similarly, we can build our own specular function as shown in Listing 28.2. This
uses vector H, which is half way between the observer vector V and the direction
to the light L. This vector H represents the orientation that the surface normal
would need to be to produce the optimal reflection. We can find how far away the
actual surface normal is from this ideal value by taking the dot product of H and
N to produce a value that gets smaller as we move away from the mirror angle.
This value is then raised to a power to control the size of the specular highlight.

Shading Models 231

Listing 28.2 Specular I11luminance model.

color Cspec=0;

illuminance (P,Nf, PI/2)

{

vector H=normalize (V+normalize (L)) ;
Cspec+=Cl*pow (H. Nf,1/roughness);

}

This lighting model is equivalent to the official RenderMan specular function, but
may not correspond to the highlights produced by a particular renderer, as many use
slightly different code to produce highlights which are subjectively more pleasing.

Custom IHlumination Models

Since the orientation for the surface and the direction of each incident light is
known, you can combine these together in any way you see fit to produce the
lighting model of your choice. You could start with a physical model of how light
interacts with a surface and try and implement it, or simply tweak one of the
existing models to produce something that looks good.

One interesting group of illumination models are known as anisotropic.
Whereas most surfaces reflect light equally in all orientations, some, such as a
vinyl record or compact disc reflect light in a highly directional way. This is usu-
ally due to some fine detail such as the record’s grooves which would be too small
to actually render directly but have a major effect on the surface’s appearance.

To create such a surface we need to factor the orientation of the surface coordi-
nates into the lighting model. For example, consider a surface made from highly
reflective threads like satin. To recreate such a surface you would need to consider
how the incident light is oriented to these threads rather than to the surface normal.

If we assume that the threads run in the u direction then we can find the direc-
tion of the threads in 3D space using Du (P) . If we normalize Du (P) and take
the dot product with H (as in the standard specular function) we would get a light-
ing model which was brightest when the light was shining along the threads. In
fact, we want to maximize the highlight when the H is at 90° to the thread, and
hence we use a scale factor of:

sqrt(l-pow(H.dir,2))

This lighting model is used as part of the shader in Listing 28.3, which also
includes ambient and diffuse components. Note how the highlights are stretched
along the surface when this is applied to the teapot model in Figure 28.2. Figure
28.3 (also Plate X) shows the result of applying an identical shader, but with the
threads oriented in the v direction by setting dir=normalize (Dv (P))

232 Essential RenderMan

Listing 28.3 An anisotropic surface.

FIGURE 28.2. An anisotropic surface

Shading Models 233

/,
FIGURE 28.3. Reorienting the satin shader (also Plate X)
|
Summary
illuminance (P,dir, theta) { . . . }

An illiminance loop, iterates over all light sources visible from the point P,
within theta radians of the direction dir.

Cl
Within an illuminance loop C1 contains the color of the incident light from the
current source.

L
Within an illuminance loop L points to the light source from the surface point
being shaded.

Chapter 29
Other Kinds of Shader

Introduction

So far we have concentrated on surface shaders as these are by far the most
common. However, RenderMan also allows shaders to control other parts of the
rendering process. In this chapter you will see how light shaders can be used to
define the behavior of light sources, while a volume shader can modify the
observed color of a surface due to atmospheric effects such as fog.

Volume Shaders

The images we see are not always the simple result of light bouncing from hard
surfaces. Often the light is modified in some way as it passes through the air, per-
haps by smoke or fog. To describe the properties of the space through which light
travels, RenderMan provides volume shaders.

The most common use of a volume shader is to describe the effect of the space
between a surface and the camera by modifying the color of a surface after it has
been calculated by the surface shader. A volume shader therefore does its work
by modifying Ci. When used in this way it is known as an “atmosphere”.

For maximum flexibility atmosphere shaders are applied on a per object basis
using the Attribute command:

Atmosphere “myDepthShader”

In principle this means you can can attatch different fogging effects to each
object, but unless you are attempting something unusual it is probably best to
apply one atmosphere shader to the whole scene. You should also be aware that
if there is no object covering a particular part of the image, then it will not be
fogged, as there is nothing there to attatch the shader to. To avoid this strange

235

236 Essential RenderMan

effect, it is common to place a large sphere around the whole scene when atmos-
phere shaders are being used.

One of the simplest descriptions of an atmosphere would be to fade out objects
beyond a certain point. We can do this by considering the length of T—the vector
from the camera to the shaded point. If this is less than a certain distance then Ci
should remain unchanged, beyond a second distance you should replace it with
the background color. In the mid-region, we blend the two together using mix ()
and smoothstep (), as shown in Listing 29.1 and Figure 29.1 (also Plate IX).
As always, when dealing with vectors we should specify a coordinate space to
ensure consistency between renderers.

Listing 29.1 A simple depth fade shader.

volume

depthfade (float mindistance =
float maxdistance = 9;
color background = color “rgb” (1,1,1);)

1g

float d;

vector Icam = vtransform(“camera”,I);

d = smoothstep(mindistance, maxdistance,
length (Icam)) ;

Ci = mix (Ci, background, d);

01 mix (Oi, color(l,1,1), d):;

FIGURE 29.1. A simple depth fade (also Plate IX)

Other Kinds of Shader 237

A slightly more realistic effect would be to consider that as an object moves
away through a foggy atmosphere, it becomes increasingly faint, but never dis-
appears completely. This exponential effect is produced by the “fog” shader
shown in Figure 29.2 (also Plate IX) and Listing 29.2.

Listing 29.2 A fog shader.

FIGURE 29.2. A fog effect (also Plate IX)

Though these shaders are very simple, volume shaders can use all of the tech-
niques available to regular shaders. You could, for example, examine the position
of the point being shaded, and use that to define a layer of fog, rather than fogging
the whole scene equally.

238 Essential RenderMan

Light Shaders

In addition to controlling the appearance of surfaces, you can also use shaders to
control the light sources in your scene. While a surface shader’s job is to calcu-
late the observed color of a surface, a light shader’s job is to decide how much
light a particular source casts upon a point.

Pointlights

The simplest interesting light shader is the pointlight. The code for this is
shown in Listing 29.3. A pointlight is defined by a position, an intensity and
a color, which are provided by parameters. From these the shader must calculate
a value for C1 and L which will be passed to the surface shader for use in an
illuminance loop, or one of the standard lighting functions.

Listing 29.3 A pointlight source.

light pointlight (
float intensity = 1;
color lightcolor = 1;
point from = point “shader” (0,0,0);)

illuminate (from)

{
Cl = intensity * lightcolor/(L.L);

}

In most cases light shaders make use of an i11luminate statement. This
looks a lot like the i11uminance loop we used to collect light in a surface
shader. In the case of the pointlight, we tell i11uminate the position of our
light source. This automatically sets up L to be the vector from the light
source’s position to the surface. From this, we calculate the color of the light
hitting the surface by multiplying the light’s intensity by its color. We divide
by L.L, as this provides a natural fall-off in light intensity as can be seen in
Figure 29.3 (also Plate IX).

Other Kinds of Shader 239

FIGURE 29.3. A point light (also Plate IX)

Although the standard pointlight shader exhibits a physically accurate
illumination pattern, there is no reason why this need be the case. In fact non-
physically realistic lights can be far easier to work with. As an example of this in
Listing 29.4 we have created a light that only casts light on surfaces which are
between two and three units away. In addition it does not fall away as quickly.
You could use such a shader to light an area in a more even fashion than the stan-
dard pointlight, as it avoids the extremes of light and dark. However, as can be
seen in Figure 29.4 (also Plate IX), the lack of physical realism can make the
scene appear strange

Listing 29.4 A nonphysical light.

light nearfarlight (
float intensity = 1;
color lightcolor = 1;
float near = 2;
float far = 3;
point from = point “shader” (0,0,0);)

float length;
float brightness;
illuminate (from)

(Continued)

240 Essential RenderMan

{
length=sqrt(L.L) ;
if (length<near || length>far)
brightness = 0;
else
brightness = 1/length;
Cl = intensity * lightcolor*brightness;
}

FIGURE 29.4. A Nonphysical light (also Plate IX)

Spotlights

A second form of 111uminate statement allows you to specify not only a posi-
tion for the light, but also a direction and a cone angle. Only those points within
the cone will be illuminated. Not only is this an easy way to create a simple spot-
light, it is also efficient, as it allows the renderer to skip the calculations for points
which are not going to be lit.

Such an illuminate statement is used in Listing 29.5. Only points within 30° of the
light’s axis are illuminated, creating the illumination pattern seen in Figure 29.5 (also
Plate IX). While this shader does create a beam of light, the edges of that beam
are sharp and unattractive. The standard spotlight incorporates additional code to
smoothly transition between the area inside the beam and the areas that are not lit.

Other Kinds of Shader 241

Listing 29.5 A conical beamlight.

light

beamlight (float intensity = 1;
color lightcolor = 1;
point from = point “shader” (0,0,0);
point to = point “shader” (0,0,1);
)

uniform vector A = normalize (to-from) ;

illuminate (from, A, radians(30))

{
Cl = intensity * lightcolor/(L.L);

FIGURE 29.5. A conical beam (also Plate IX)

Having created some basic light sources, you are free to modify the resultant
light in any way you feel appropriate. For example, you could use a texture to
project an image into the scene. In Listing 29.6 we have used the angle between
the axis and the L vector to modify the light’s color, producing the pattern of
lighting seen in Figure 29.6 (also Plate IX).

242 Essential RenderMan

Listing 29.6 Modifying a light’s color.

light colorlight (
float intensity = 1;
point from = point “shader” (0,0,0);
point to = point “shader” (0,0,1);
)

float cosangle;
color lightcolor;
uniform vector A = normalize (to-from) ;
illuminate (from, A, radians(30))
{
cosangle = (L.A)/length (L) ;
lightcolor = color “hsv” (cosangle*10,1,1);
Cl = intensity * lightcolor/(L.L) ;
}

FIGURE 29.6. Modifying a lights color (also Plate IX)

Shadows

One of the most common modifications is the addition of support for shadow
maps. Having created a shadow map as described in Chapter 14, actually using
it is remarkably simple. By simply passing the name of a map to the shadow

Other Kinds of Shader 243

function, as in Listing 29.7 you can obtain a value indicating to what extent a
point is in shadow. Within a light shader Ps represents the point on the surface
being lit, and hence 1-shadow (“shadowmap”, Ps) calculates to what
extent the point should be illuminated. This value is simply factored into the light-
ing calculation.

Listing 29.7 Creating a shadow.

light shadowlight (
float intensity = 1;
color lightcolor = 1;
point from = point “shader” (0,0,0);
point to = point “shader” (0,0,1);
string shadowname = “”;

)

float atten;
uniform vector A = normalize (to-from) ;

illuminate (from, A, radians (30))

{

if (shadowname !'= “”)

atten =1-shadow (shadowname, Ps) ;
else

atten=1;

Cl = atten*intensity * lightcolor/(L.L) ;
}

If the map name “raytrace” is used, then the shadow will be calculated directly
by ray tracing, rather than using an actual map file.

Summary
illuminate(P) {. . .}
illuminate (P,A,angle) {. . .}

[luminate works out which points should be illuminated, either in all directions
from the point P or within angle of an axis A. L is automatically calculated, and
C1 must be calculated within the following braces.

float shad=shadow (“mapname”, Ps)
Calculates to what degree the point Ps is in shadow. The incident light for the
point is usually multiplied by 1-shad.

Essential RenderMan

244
—
Related Functions

solar(direction,angle)

Not all lights have a position. The solar statement serves a similar function to illu-
minate but does not require a position. It is used to create distant lights such as
the sun.

Chapter 30

Global Illumination

Introduction

In recent years most RenderMan implementations have added support for global
illumination (GI)—that is the calculation of effects produced by light interacting
with several surfaces before it reaches the camera. This allows more realistic
images to be produced at the cost of additional rendering time.

Because GI is potentially very slow to render, it has been incorporated into the
RenderMan standard in such a way that effects can be controlled on per object
basis. Only those objects which require GI need use it, while objects which can
be accurately rendered with standard techniques continue to be rendered at high
speed. In this chapter we will see how you can enable ray-traced shadows, reflec-
tions, caustics, and bounce light using the shading language.

Shadows

As we saw in Chapter 14, ray-traced shadows can be implicitly integrated into
lights by using “raytrace” as the name of a shadow map. When the shadow
function is called with this map, the value returned is calculated directly by ray
tracing, rather than using a real shadow map file.

Not all objects need be included in the calculation of ray traced shadows. We
can improve performance by manually excluding some objects as potential cast-
ers of shadows. For example, in Figure 30.1 (also Plate X) the ground plane
cannot cast shadows on the teapot or itself, so in Listing 30.1 we have marked it
as transparent for the purposes of ray-tracing shadows. Performance is improved,
but the resulting image is correctly shadowed. The Attribute group “visibility”
is used to control which objects are use in different rendering situations. In the case
of shadow rays, the “transmission” controls whether objects cast shadows.
This attribute can take four possible values of progressing complexity:

245

246 Essential RenderMan

Listing 30.1 Ray-Traced Shadows.

Display “shadow.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Rotate =20 1 0 O
Translate 0 -1 5
WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “shadowspot” 2
“shadowname” [“raytrace”]
“from” [2 4 0]
“to” [0 0 O 1]
“intensity” [7]
“coneangle” [0.3]
“conedeltaangle” [0.05]

Surface “plastic”
Attribute “wvisibility” “transmission” [“opaque”]
ReadArchive “teapot.rib”

Color [O 1 0]
Attribute “visibility” “transmission” [“transparent”]
Patch “bilinear” “P” [-5 -1 -5

5 =1 =5
=5 =1 5
5 =1L 5]

WorldEnd

FIGURE 30.1. Ray-traced shadows (also Plate X)

Global Illumination 247

“transparent”—the object does not cast ray-traced shadows
“opaque”—the object casts shadows, and is considered as fully opaque
“Os”—the object casts shadows but is semitransparent, as defined in the RIB file
“shader”—the object casts shadows and its transparency varies over the surface

In addition to “transparent” and “opaque,”’ for the purposes of ray-traced
shadows objects may be semitransparent. When the “Os” transmission value is
used then the transparency for shadows is that set by the Opacity command. If
“shader” is used then a full surface shading calculation is performed upon this
surface to determine its opacity. In addition to using the “raytrace” shadow
map you can explicitly test the visibility between two points using the function
transmission (Psrc, Pdest). This calculates how much light can be
transmitted between Psrc and Pdest.

Mirror Reflections

Perhaps the most obvious use of GI is to produce mirror reflections in highly
polished surfaces. To calculate these, you simply need to find the direction of the
reflection (using reflect (), as we did for environment maps in Chapter 24),
and fire a ray using the trace () function to find the color of the scene in that
direction. A simple shader which does this is shown in Listing 30.2.

Listing 30.2 A Reflective Shader.

surface reflect (
float Ka = 1;
float Kd = .2;
float Ks = .7;
float Kr = .3;
float roughness = .1;
color specularcolor = 1;)

normal Nf = faceforward (normalize(N),I);
vector V = —normalize(I);
color Ct;

vector R=normalize (reflect(I,Nf));
color Cr =trace(P,R);

Ct = Cs;

Ooi Os';

Ci = 0i * (Ct * (Ka*ambient() + Kd*diffuse (Nf)) +
specularcolor * (Ks*specular (Nf,V,roughness) +
Kr*Cr)) ;

248 Essential RenderMan

We have applied this shader in Listing 30.3. Just as with ray-traced shadows it
is important to control which objects are included in ray traced reflections. In this
case the ground is reflected in the teapot (as seen in Figure 30.2, also Plate X),
so the “reflect” shader has been applied to the teapot. However, to keep render
times managable, the teapot will not itself be visible in those reflections. This is
controlled with the “visibility”/“trace” Attribute. To make the teapot
invisible in reflections we have used:

Attribute “wisibility” “trace” [0]
While the gound plane has the Attribute
Attribute “wisibility” “trace” [1]

It is also possible to implicity ray trace reflections by using a mapname of
“raytrace” with the environment () function.

Listing 30.3 Ray traced reflections.

Display “raytrace.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Rotate =20 1 0 O
Translate 0 -1 5
WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “shadowspot” 2
“shadowname” [“raytrace”]
“from” [2 4 0]
“to” [0 0 0]
“intensity” [7]
“coneangle” [0.3]
“conedeltaangle” [0.05]

Surface “reflect”

Attribute “visibility” “trace” [0]

Attribute “wvisibility” “transmission” [“opaque” |
ReadArchive “teapot.rib”

Surface “plastic”

Color [O 1 0]

Attribute “visibility” “trace” [1]

Attribute “wvisibility” “transmission” [“transparent”]

Patch “bilinear” “p” [-5 -1 -5
5 -1 -5
-5 -1 5
5 -1 5]

WorldEnd

Global Illumination 249

FIGURE 30.2. Ray-traced reflections (also Plate X)

—
Soft Reflections

The trace () function probes the scene in a single direction, which produces a
mirror like reflection. However, in the real world surfaces are rarely so highly
polished. A slightly rougher surface would reflect light in a range of directions.
We can simulate this by tracing several rays in slightly different directions, and
combining them to produce a slightly blurred reflection.

While its possible to do this in SL using trace (), it is slightly more tricky
to implement correctly than it would at first appear. To make things easier (and
more efficient) the “gather” statement has been added to the RenderMan API.
This fires a number of rays distributed over a cone and allows you to combine the
results in a flexable fashion. Listing 30.4 calculates a reflection color (Cr) using
gather, and while it is more complex than trace (), it is also significantly
more powerful. A number of rays (in this case 15) are traced from the point P in
the direction R, plus or minus the cone angle (10°). For each ray that is traced that
hits an object, a surface shader is run, and the resulting color is copied from Ci
in that shader to Chit in this one. Of course, you are not just restricted to inter-
rogating Ci—you can obtain virtually any parameter of the hit surface.

250 Essential RenderMan

Listing 30.4 The gather statement.

color Cr=0;
color Chit;
float samples=15;
vector R=normalize (reflect(I,Nf));
float hits=0;
gather (“illuminance”, P, R, radians(10), samples,
“surface:Ci”, Chit)
{
Cr+=Chit;
hits+=1;
}

else
{

Cr+=color “rgb” (0.5,0.5,0.5);
hits+=1;
}

Cr=Cr/hits;

Rather than just returning a single value like trace, gather allows you to
process the results of each hit. The code block following gather is executed
each time a ray hits a surface, and while we have chosen to simply add up the
colors found for each hit, you can use any code you like here. This block is equiv-
alent to an i1luminance loop, and you could use it to implement similar local
illumination models.

Of course not all rays hit objects. In our test scene, rays which are reflected
upwards miss the ground plane, and there is no surface color to calculate. This is
the main reason Figure 30.2 looks slightly strange—the empty space of the sky is
white, but the top of the teapot does not reflect it. The gather statement takes
care of this with an e 1 se clause. If the ray does not hit any object at all, then the
second block of code is executed, which in this case adds a constant background
color. You could use an environment map here. This would allows you to ray trace
between important foreground objects, but fall back to a much simpler environ-
ment map for distant parts of your scene which are less significant.

In Figure 30.3 (also Plate X) the top of the teapot is lighter as a result of the
“misses” being correctly handled, and the edges of the reflected shadows are
softer.

Global Illumination 251

FiGURE 30.3. Tracing multiple rays (also Plate X)

When using ray-traced reflections it is important to watch out of the explosion
of rays: one ray from the camera creates 10 reflected rays which each create 10
further rays. Suddenly over 100 rays need to be traced and 100 surfaces shaded,
and the scene becomes unrenderable in the available time. This must be managed
carefully, only ray tracing essential objects. Additionally, you can use the
raylevel () function in your shaders to test if you are rendering a camera ray,
a first generation reflection or some deeper, more complex inter-reflection. As the
value returned by raylevel () increases you should simplify your shader, and
consider removing ray tracing all together. For example you could add:

float samples=10/(raylevel ()+1);

to Listing 30.4, so that less rays are fired for as the depth of reflection increases.

As a safety control to ensure that ray tracing actually completes, and does not
spend hours bouncing light between two parallel surfaces, there are limits on how
many levels of reflection will be calculated. The global limit is set in the RIB file by:

Option “trace” “maxdepth” [10]
It can further be reduced on a per object using
Attribute “trace” “maxspeculardepth” [2]

It is also possible to use simplified geometry during ray tracing. Simply make the
complex object invisible to traced rays, then add a simpler object which is made
invisible to the camera using the Attribute

Attribute “wisibility” “camera” [0]

252 Essential RenderMan

Bounce Light

While in theory it would be possible to use ray tracing to calculate all of the lighting
effects within a scene it becomes particular inefficient when diffuse surfaces are used.
These scatter light in a wide range of directions requiring far too many rays to be
traced. Rather than writing shaders which trace rays looking for light it would be far
more efficient to start with the light sources (where we know there is lots of light),
and see where the light goes. This is achieved using photon maps. Like shadow maps,
photon maps are precalculated in a separate render pass which records where light
bounces from diffuse surfaces. These maps are then interrogated by shaders in the
final beauty pass. Listing 30.5 shows our scene modified to generate a photon map.

Listing 30.5 Generating a photon map.

Hider “photon” “emit” [1000000]
Display “photon.tiff” “file” “rgba”
Projection “perspective” “fov” [30]

Attribute “photon” “globalmap” [“photon.gpm”]
Rotate =20 1 0 O
Translate 0 -1 5
WorldBegin
LightSource “ambientlight” 1 “intensity” [0.1]
LightSource “shadowspot” 2
“shadowname” [“raytrace”]
“from” [2 4 0]
“to” [0 0 0]
“intensity” [7]
“coneangle” [0.3]
“conedeltaangle” [0.05]

Surface “reflect”

Attribute “visibility” “photon” [1]

Attribute “photon” “shadingmodel” “matte”
Attribute “visibility” “trace” [0]

Attribute “wvisibility” “transmission” [“opaque” |
ReadArchive “teapot.rib”

Surface “plastic”

Attribute “visibility” “photon” [1]

Attribute “photon” “shadingmodel” “matte”

Color [O 1 0]

Attribute “visibility” “trace” [1]

Attribute “visibility” “transmission” [“transparent”

Patch “bilinear” “p” [-5 -1 -5
5 -1 -5
-5 -1 5
5 -1 5]

WorldEnd

Global Illumination 253

We have set the Hider to be “photon,” instructing the render to generate a
map. 10,00,000 particles are generated, allowed to bounce round the scene to
simulate the light, and then stored in the file “photon. gpm.” As both the teapot
and the ground will be used to bounce light around, we have set:

Attribute “visibility” “photon” [1]

on both objects.

Though we have used a lot of particles, the photon mapping process is very
simple, and relies on huge numbers of photons to do the work. While you should
consider if fewer photons can be used for any particular scene, in this case the
render times are still short enough that we need not be too concerned. To speed
up the photon mapping process full shading is avoided by specifying that simpli-
fied shaders built into the renderer are used during photon mapping, rather than
user defined SL shaders. In this case, we have specified that the objects both
behave as matte objects using the RIB command:

Attribute “photon” “shadingmodel” “matte”

The simple shading models available will typically include matte, metal, plastic,
and glass but this is highly renderer dependant.

Having generated a photon map, to use it in a shader, we simply call the func-
tion photonmap (), providing the name of the map, the point we are shading and
the surface normal, as in Listing 30.6. This returns the light at the surface, as cal-
culated during the map generation pass. As the main light sources have been
included in the photon map, we only need to add ambient light to get a fully
illuminated scene.

Listing 30.6 Using a photon map.

surface photon (float Kd=0.75;
float Ka=1;
string mapname="photon.gpm”)
{
normal Nf=faceforward(normalize (N),I);
0i=0s;
Ci=Cs* (Kd*photonmap (mapname,P,Nf)+Ka*ambient ())
“Oil g

}

If we attach the photon shader to the objects in our scene we get the image in
Figure 30.4 (also Plate X). The lighting is much softer than produced by ray
tracing, as some of the darker areas have been filled in by bounce light. This is
most noticeable on the underside of the teapot lid’s handle.

254 Essential RenderMan

FIGURE 30.4. Bounced light (also Plate X)

O —
Bringing it all Together

Though photon maps can efficiently approximate complex lighting, the results
are often noisy, as can be seen by the dappled effect in Figure 30.4. While using
more photons can improve this to some degree, a better approach is to combine
photon mapping with ray tracing. In parts of the scene where quality is most
important, we can fire lots of rays, while in less critical areas (for example, on
objects which are themselves visible through reflections), we can use photon
maps to produce a quick approximation without generating any more rays.

While you could implement this explicitly in SL, this approach has been bun-
dled up in the indirectdiffuse () function. Simply calling this function
will trace rays in all directions. However, after a small number of bounces (usu-
ally only one), we stop ray tracing to avoid huge render times. Depending on the
implementation, a photon map can then be used to complete the calculation. The
depth limit is controlled by:

Attribute “trace” “maxdiffusedepth” [2]
while the map used to complete the calculation is set with:
Attribute “photon” “globalmap” [“photon.pmap”]

as in Listing 30.7.

Global Illumination 255

Listing 30.7 Generating a photon map.

The “indirect” shader in Listing 30.8 adds the result of indirect-
diffuse () into a standard lighting calculation. It simply requires the posi-
tion, orientation, and number of samples to use. As indirectdiffuse ()
is used to calculate lighting for matte surfaces it needs to fire a lot of rays to
capture the lighting in all directions, but these rays are shared between neigh-
boring surface points, speeding the process up. The results in Figure 30.5 (also
Plate X) show soft color bleeding on the underside of the teapot where it
reflects the ground plane.

256 Essential RenderMan

Listing 30.8 Indirect Diffuse.

surface indirect (float Kd=0.75;
float Kp=1;
float Ka=1;)
{
normal Nf=faceforward(normalize (N),I);
0i=0s;
Ci=Cs * (Kd*diffuse (Nf)
+Ka*ambient ()
+Kp*indirectdiffuse (P,N£f,100)) *01i;

FiGURE 30.5. Indirect diffuse illumination (also Plate X)

Alternatively you can create an indirectdiffuse light shader which collects the
light on behalf of the surface, and apply this light to standard shaders.

—
Caustics

In addition to handling diffuse reflections, photon maps are also well suited to
handling caustics—highly complex light paths made up of multiple specular
refractions or reflections. In these cases, the problem is that the paths may be very
hard to find, but carry a lot of light. By starting at the light source we can “follow

Global Illumination 257

the energy.” While regular photon maps will include caustics, you can specifically
tell the renderer to seek out caustic lighting paths and store them in a separate
photon map, during the map generation phase. This is done by replacing :

Attribute “photon” “globalmap” [“photon.gpm”]

With
Attribute “photon” “causticmap” [“caustic.cpm”]

You can specify both a causticmap and a globalmap to be generated in the same
render pass, but generating them seperatly allows you to tune the number of pho-
tons used for each map.

Once this map has been generated we can use it just as we did the regular pho-
tonmap. However, as the caustic map only includes light which has bounced off
(or refracted through) specular surfaces we need to add in the regular lighting.
A simple shader which does this is shown in Listing 30.9.

Listing 30.9 A shader for using caustic maps.

surface causticPhoton (float Kd=0.75;
float Kp=1;
float Ka=1;
string mapname=“photon.cpm”)
{
normal Nf=faceforward(normalize (N),I);
0i=0s;
Ci=Cs* (Kd*diffuse (Nf)
+Ka*ambient ()
+Kp ‘photonmap (mapname ,P,Nf)) * 01 ;

To generate Figure 30.6 (also Plate X) we applied a glass shader to the sphere,
and generated a caustic map. When the final scene is rendered with the
“causticPhoton” shader applied to the ground plane, the caustic map produces
the bright spot in the centre of the sphere’s shadow.

258 Essential RenderMan

FIGURE 30.6. Caustics (also Plate X)

Rather then explicity using a photon map to generate caustics, you can also use
the function caustic (P,Nf) which will use the map specified in the RIB
file with:

Attribute “photon” “causticmap” [“caustic.cpm”]

Like indirectdiffuse () illumination caustics can be calculated in either
a surface or light shader.

——
Summary

While it is tempting to think the GI is something that is simply “turned on,”
to get the best from it you must use each approach sparingly, combined with
standard local illumination, depth mapped shadows and environment maps. By
applying GI only where necessary you can save time on simple parts of the
scene, and leaving more time to render the things which are important. Each of
the illumination techniques available in RenderMan provides part of the solution
to a difficult puzzle—to produce realistic images on a practical timescale.

As ray tracing and photon maps are some of the more recent features added to
the RenderMan interface it is implementation is still in flux. Here we have

Global Illumination 259

described the basic interface, but most of the functions have additional options,
which are implementation dependant. Some renderers may not support any of the
GI features, while others may require slightly different commands to render
the scene using GI. This will be described in your renderers documentation.

Attribute “wvisibility” “camera” [1]

Attribute “visibility” “trace” [0]

Attribute “wvisibility” “photon” [0]
The “visibility” attribute controls whether geometry is considered when
calculating camera rays, secondary traced rays, or photon maps.

Attribute “wisibility” “transmission” [“transparent”]
Attribute “wisibility” “transmission” [“opaque”]
Attribute “visibility” “transmission” [“0s”]

Attribute “wisibility” “transmission” [“shader”]
The “transmission” visibility controls how an object interacts with ray-traced
shadows. It is slightly more complex, as the object may be transparent, opaque,
uniformly semi-opaque, or arbitrarily semi-opaque as defined by the shader.

Ctrans=transmission (Psrc, Pdest)
Tests the visibility between two points.

Chit=trace(P,dir);
Finds the color of the scene in direction dir from point P.

gather (“illuminance”, P, dir, angle, samples,
“surface:Ci”, Chit,...)
{...} else { ... }
Traces a number of rays in a cone from the point P in direction dir. Upon a hit,
the surface is interrogated, and the result made available in the first code block.
If a ray fails to hit anything the second block is executed.

Option “trace” “maxdepth” [10]

Attribute “trace” “maxspeculardepth” [2]
If ray tracing were to be allowed to continue indefinitely some scenes might never
be rendered. Maxdepth is the absolute limit on how deep rays can be traced,
while maxspeculardepth provides a per object limit.

d=raylevel ()
Counts the number of bounces from the camera to the current ray.

Hider “photon” “emit” [10000000]
Specifies that the current render pass should generate a global or caustic photon
map, rather than a final image.

260 Essential RenderMan

Attribute “photon” “globalmap” [“photon.gpm”]

Attribute “photon” “causticmap” [“photon.cpm”]
During the photon map generation pass these RIB commands sepecify if a caus-
tic and/or global photon map should be generated, and the file names that
should be used. During a render pass the maps specified are used by functions
like indirectdiffuse () and caustic () which implicitly access photon
maps.

Cp=photonmap (“photon.pmap”, P,Nf, ...)
Interrogates a photon map to find the light hitting a surface with orientation Nf
at point P.

Cid=indirectdiffuse (P,Nf,10)

Attribute “trace” “maxdiffusedepth” [1]
Indirectdiffuse () calculates bounce lighting for a surface, by tracing a
specified number of rays. Maxdiffusedepth provides a limit to the depth of
rays traced. Once this limit is reached the global photon map is used to complete
the calculation.

Cc=caustic (P,Nf,...)
Calculates caustic lighting for the point P.

Bibliography

Four publications cover most of the information required to make successful use
of a RenderMan renderer. Anyone seriously interested in rendering will eventu-
ally end up owning these books. They all assume a relatively high level of tech-
nical ability, and cover a lot of material very quickly. However, if you’ve worked
your way through this book then you should be able to tackle them without too
much difficulty.

RenderMan Companion, A Programmer’s Guide to
Realistic Computer Graphics, (Steve Upstill), Addison
Wesley, 1990

For most RenderMan users this is the primary source of information. It covers
modeling and shading in great detail. It is, however, based on the original
RenderMan standard, and as such has a number of omissions. Most obviously the
book was written before the introduction of RIB files, and hence discusses
RenderMan purely in terms of the C API. While adapting the information to RIB
is usually trivial, it does make the book difficult to follow for weaker
programmers.

Advanced RenderMan (Apodaca & Gritz), Morgan
Kaufmann, 1999

This book starts at a simple level, and provides a moderately good reference
section covering both RIB and shading Language. It also includes a tutorial sec-
tion covering much of the maths and physics of rendering. However, it moves
quickly from this introduction to more complex topics. As such it does live up to
its “Advanced” title.

261

262 Essential RenderMan

The RenderMan Standard v3.2 (Pixar) 2000

This document, available as a PDF from Pixar’s website (www.pixar.com),
formally defines the RenderMan API including all the extensions and features
added by Pixar up until the time of its publication. As such it provides a level of
detail unmatched elsewhere, including details of features which are not supported
even by Pixar’s renderer. However, the price for this accuracy is a text which few
users would choose to read. If you need to know exactly how something works
then this is the place to look, but for most purposes refer to the previous texts.

Texturing and Modelling: A Procedural Approach
(Ebert et al), Academic Press, 1998

This is not book about RenderMan as such, but a broader guide to the concepts
of procedural texturing. However, most of the ideas can be implemented in SL, or
are already built into the language. The format of the book is a collection of chap-
ters written by a number of authors, which makes it a little inconsistent at times,
and the academic style may seem off putting, but the quality of information
makes this an essential book which you will return to many times.

Index

3Delight - 12, 20

A

abs() - 155
AIR - 12, 20, 132
Aliasing - 213
ambient() - 139
Ambientlight - 64
Angel - 12, 20, 132
Anisotropic - 231
API-3
Agsis - 12, 132
ART - 12, 20, 132
Aspect Ratio - 52
Atmosphere Shaders - 235
Attribute

(Command) - 47
AttributeBegin/End - 42
Attributes - 42

B

Back Face Culling - 47
Basis - 90

Bicubic Patch - 87
BMRT - 5

Boolean Logic - 158
Brightness - 54

Bump Mapping - 197

C

Camera Position - 51
Camera space - 170
Caustics 256

cellnoise() - 163
Checkerboard - 162, 213, 223
Ci- 135

Clipping - 52

Color - 41

Comments - 18, 131
ConcatTransform - 32
Cone - 36

Constant - 69, 135
Coordinate Systems - 170
Cs- 135

Current space - 170

Curves - 125

Cylinder - 36

Cylindrical Projection - 174

D

Declare - 117
Depthfade - 236
DepthOfField - 105
diffuse() - 138, 229
Disk - 39
Displacement - 76, 191
Display - 19

263

264

distance() - 156
Distantlight - 60
Du,dv - 215

E

Environment

Maps - 184
environment() - 188
Exposure - 54

F

f/stop - 108
faceforwards() - 137
Field Of

View - 49
FilterWidth - 216
floor() - 161
Focal Distance - 106
Focal Length - 107
Fog - 237
Format - 52
Fractional Brownian

Motion -fBm - 206
FrameBegin/End - 100
Frequency

Clamping - 221
fresnel() - 190

G

Gamma Correction - 54

gather() - 249
GeneralPolygon - 80

H

Hair - 125
Hsv - 150
Hyperboloid - 40

I

Identity - 32

Essential RenderMan

illuminance() - 230
Illuminate - 59
iluminate() - 238
indirectdiffuse() - 254
Integration - 218

L

Light Shaders - 238

LightHandle
Lighting - 57

LightSource -

M

-59, 118

58

MakeCubeFaceEnvironment - 196
MakeLongLatEnvironment

- 187

MakeShadow - 96

Marble - 211

Matte (Attribute) - 46
Matte (shader) - 70, 136

Maya - 3

Metal - 71, 140

mix() - 150
mod() - 160

MotionBegin/End - 102

MotionBlur -

N

N- 136

Nf - 137
Noise - 201
Normal - 82,

101

137

Normalize - 138

NuPatch - 90
NURBS - 90

Index

o

Object space - 171

Oi - 135

Opacity - 43

Option (Command) - 56

Options - 49

Orientation - 47

Orthographic
Projection - 189

Os - 135

P

P- 169

Paraboloid - 40
Parameter Lists - 58, 114
Particles - 119

Patch - 84

PatchMesh - 90
Perspectve Projection - 173
Phong Highlights - 144
Phong Shading - 82
Photon maps - 252
Pipeline - 10

Pixar - 3

PixelFilter - 55
PixelSamples - 53
Plastic - 73, 142
Pointlight - 58, 238
Points - 119
PointsGeneralPolygons - 89
PointsPolygons - 89
Polygon - 79

PRMan - 4, 12, 20, 132
Projection - 19, 49
ptlined() - 157

Q

Quantize - 55

R

Ramp - 146

raylevel() - 251

Raytraced reflections - 247
Raytraced Shadows - 99, 245
reflect() - 188

Reflections - 247

refract() - 190
RenderDotC - 12, 20, 132
Resolution - 52
RibArchive - 89

Rotate - 29

S

s - 147

Satin - 231

Scale - 28

SGI - 11

Shader Compiler - 132
Shader space - 172
ShadingRate - 45
Shadow Maps - 91
shadow() - 243
Shutter - 101

Sides - 47
smoothstep() - 154
Softlmage - 3

Solar - 244

Solid Textures - 175
specular() - 140, 230
Sphere - 33

Spherical Projection - 174
spline() - 210
Spotlight - 62, 240
sqrt() - 156

Super Sampling - 52
Surface - 57

Surface Coordinates - 147
Surface Shaders - 69

266 Essential RenderMan

T W

t- 147 Wood - 205

Texture Coordinates - 147 WorldBegin/End - 19
Texture() - 179

Tiling - 159 X

Torus - 37

trace() - 247 xcomp() - 169
Transform (Command) - 32

TransformBegin/End - 26 Y

Transforms - 23
Translate - 23
TrimCurve - 90

ycomp() - 169

Turbulence - 208 z

Z-Buffer - 91
U zcomp() - 169
u- 147,215
A%
V- 140

v - 147,215

	Prelims.pdf
	Ch01.pdf
	Ch02.pdf
	Ch03.pdf
	Ch04.pdf
	Ch05.pdf
	Ch06.pdf
	Ch07.pdf
	Ch08.pdf
	Ch09.pdf
	Ch10.pdf
	Ch11.pdf
	Ch12.pdf
	Ch13.pdf
	Ch14.pdf
	Ch15.pdf
	Ch16.pdf
	Ch17.pdf
	Ch18.pdf
	Ch19.pdf
	Ch20.pdf
	Ch21.pdf
	Ch22.pdf
	Ch23.pdf
	Ch24.pdf
	Ch25.pdf
	Ch26.pdf
	Ch27.pdf
	Ch28.pdf
	Ch29.pdf
	Ch30.pdf
	Biblio.pdf
	Index.pdf

